Let the integers be x-2, x, x+2.
Given,
x -2 + x + x + 2 = 69
3x = 69
x = 23
Hence, the integers are 21, 23 and 25.
Complete question:
A circle with radius 3 has a sector with a central angle of 1/9 pi radians
what is the area of the sector?
Answer:
The area of the sector =
square units
Step-by-step explanation:
To find the area of the sector of a circle, let's use the formula:

Where, A = area
r = radius = 3
Substituting values in the formula, we have:

The area of the sector =
square units
Answer:
To give more clarity to the question, lets examine the attached back-to-back stem plot.
A)
Having examined the stem plot, we can using quick calculations, summarize that:
The mean (40.45 cal/kg) and median (41 cal/kg) daily caloric intake of ninth-grade students in the rural school is higher than the corresponding measures of center, mean (32.6 cal/kg) and median (32 cal/kg), for ninth-graders in the urban school.
The median and the mean for the students in the 9th grade in the urban school is lower than that of those of their contemporaries in the rural school. The respective medians and means are stated below:
Urban 9th Grade Students
Median = 32 cal/kg
Mean = 36 cal/kg
Rural 9th Grade Students
Median = 41 cal/kg
Mean = 41 cal/kg
Please note that all figures above have been approximated to the nearest whole number.
B)
It is unreasonable to generalize the findings of this study to all rural and urban 9th-grade students in the United States because the sample is too small compared to the target population size.
To allow for generalization, they would have to collect and analyze more samples say from every state within America.
Cheers!
(5/8)+(2/5)=
so you need a common den so in this case its 40
so we multiply to get 40 like
(5/5)(5/8)+ (2/5)(8/8)=
25/40 + 16/ 40 = 41/40
Answer:
Mid point is: (2.8;4.9)
Step-by-step explanation:
To find midpoint of a line segment we can use the general equation:

Where the point of the line are: (x₁;y₁) and (x₂;y₂).
In the problem, x₁ = 2.6, y₁ = 5.1 and x₂ = 3 and y₂ = 4.7. Replacing in the equation:

<h3>Mid point is: (2.8;4.9)</h3>