Cavalier-Smith's model no longer separates prokaryotes and eukaryotes is the statement which differs from kingdom classification.
Explanation:
Cavalier-Smith in 1998 had reduced the kingdom numbers. The were brought down from 8 to 6. These are:
Animalia
Protozoa
fungi
plantae
chromista
bacteria
He divided eukaryotes into 6 kingdoms. The kingdoms are refined for better classification.
While Carolus Linnaeus divided the organisms into two kingdoms
Animalia and plantae.
The five kingdom classification:
Monera (prpkaryotes)
Protista ( unicellular eukaryotes)
fungi (multicellular decomposers)
plantae (multicellular producers)
Animalia (multicellular consumers)
It has drawbacks like in kingdom monera both autotrophs and heterotrophs are included. Phylogeny is not explained in lower organisms of monera and protista. Virus is also in classification. Cavalier-Smith introduced a new kingdom called chromista which are single- celled or multicellular eukaryotic organisms as diatoms, algae, oomycetes and protozoans which perform photosynthesis.
Set up the equation.
Since gravity and liquid densities are fixed (for the most part), the height of the liquid is the largest variable in the equation. The equation reads as Pfluid = ρgh, where ρ is the density of the liquid, g is the acceleration of gravity, and h is the height of the liquid (or depth of the fluid)
Dry mouth or a decrease in urine output possibly ?
Channel proteins is the answer to your question
Answer:
Intermediate Product Accumulation
Explanation:
If one of the crucial enzyme say B is mutated in the process of normal product formation, then the reaction will not proceed further from that point and accumulation of an intermediate product in the cell takes place. The mutation in the enzyme could be environmental or genetic but it will surely alter the enzyme functioning. In the end, the damage malfunctioning cell will be removed using the process of apoptosis.