Answer:
which agrees with answer B
Step-by-step explanation:
First write the equation that represents this type of variation:

then we need to solve for "x" when y = 10 as shown below:

6 √5
7 π
Both continue on forever and will never have an exact answer - therefore, they're irrational.
Step-by-step explanation:
standard form of
1 . = x⁴-2x ²+3
2. = 5m³- 3m²+ 9m -7
<em><u>plz</u></em><em><u> </u></em><em><u>mark</u></em><em><u> my</u></em><em><u> answer</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u> plzzzz</u></em><em><u> vote</u></em><em><u> me</u></em><em><u> also</u></em><em><u> </u></em><em><u>plzzzz</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u> Hope</u></em><em><u> this</u></em><em><u> will</u></em><em><u> be</u></em><em><u> helpful</u></em><em><u> for</u></em><em><u> you</u></em>
Answer:
The right option is B) 12.60
Step-by-step explanation:
We have given,
Number of shares = 30
Cost of each share = $34
Total cost of shares = 30 × 34 = $1020
Since the company paid annual dividends of $0.42 per share.
i.e Total annual dividend company paid = 0.42 × 30
Total annual dividend company paid = $ 12.60
Hence the right option is B) 12.60
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- [Function] Derivative Rule [Product Rule]:
![\displaystyle f'(x) = \frac{d}{dx}[9x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B9x%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle f'(x) = 9 \frac{d}{dx}[x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%209%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Basic Power Rule:
![\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%2090x%5E9%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Arctrig Derivative:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation