y - 5 = 3/2(x + 3)
y - 5 = 3/2x + 9/2
y = 3/2x + 9/2 + 5
y = 3/2x + 19/2
<em>Equation</em><em> </em><em>of</em><em> the</em><em> line</em><em> </em><em>formula</em><em> </em><em>:</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>mx</em><em> </em><em>+</em><em> </em><em>c</em>
<em>#</em><em>S</em><em>o</em><em> </em><em>the</em><em> </em><em>slope</em><em> </em><em>(</em><em>m</em><em>)</em><em> </em><em>is</em><em> </em><em>3</em><em>/</em><em>2</em>
<h2>
<em>Answer</em><em> </em><em>:</em><em> </em><em>3</em><em>/</em><em>2</em></h2>
Answer:
About 7 percent
Step-by-step explanation:
Answer:
45 degress
Step-by-step explanation:
Answer:
see explanation
Step-by-step explanation:
let y = f(x) and rearrange making x the subject, that is
y =
x + 4 ( multiply through by 2 to clear the fraction )
2y = x + 8 ( subtract 8 from both sides )
2y - 8 = x
Change y back into terms of x with x =
(x) , then
(x ) = 2x - 8
(4) = 2(4) - 8 = 8 - 8 = 0
Answer:
radius = 1.37 cm
height = 2.71 cm
Step-by-step explanation:
We are given volume = 16 m³.
Formula for volume of a cylinder is;
V = πr²h
Thus,
πr²h = 16
h = 16/πr²
Now formula for the surface area is;
S = 2πr² + 2πrh
Putting 16/πr² for h gives;
S = 2πr² + 2πr(16/πr²)
S = 2πr² + 2π(16/πr)
S = 2π(r² + 16/πr)
To minimize, we will find the derivative of S and equate to zero
S' = 2π(2r - 16/πr²) = 0
4πr - 32/r² = 0
4πr = 32/r²
r³ = 32/4π
r = ∛(32/4π)
r = 1.37 cm
From h = 16/πr²;
h = 16/(π × 1.37²)
h = 2.71 cm