Answer:
Median is 3
Step-by-step explanation:
I believe -7 + 91i. i hope this helps
There is some ambiguity here which could be removed by using parentheses. I'm going to assume that you actually meant:
x-3
h(x) = ---------------
(x^3-36x)
To determine the domain of this function, factor the denominator:
x^3 - 36x = x(x^2 - 36) = x(x-6)(x+6)
The given function h(x) is undefined when the denominator = 0, which happens at {-6, 0, 6}.
Thus, the domain is "the set of all real numbers not equal to -6, 0 or 6."
Symbolically, the domain is (-infinity, -6) ∪ (-6, 0) ∪ (0, 6) ∪ (6, +infinity).
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Algebra II</u>
- Distance Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
Point (21, 13)
Point (3, 13)
<u>Step 2: Find distance </u><em><u>d</u></em>
Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>
- Substitute in points [Distance Formula]:

- [√Radical] (Parenthesis) Subtract:

- [√Radical] Evaluate exponents:

- [√Radical] Add:

- [√Radical] Evaluate:

Answer:
The mean and the standard deviation of the number of students with laptops are 1.11 and 0.836 respectively.
Step-by-step explanation:
Let <em>X</em> = number of students who have laptops.
The probability of a student having a laptop is, P (X) = <em>p</em> = 0.37.
A random sample of <em>n</em> = 30 students is selected.
The event of a student having a laptop is independent of the other students.
The random variable <em>X</em> follows a Binomial distribution with parameters <em>n</em> and <em>p</em>.
The mean and standard deviation of a binomial random variable <em>X</em> are:

Compute the mean of the random variable <em>X</em> as follows:

The mean of the random variable <em>X</em> is 1.11.
Compute the standard deviation of the random variable <em>X</em> as follows:

The standard deviation of the random variable <em>X</em> is 0.836.