1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artyom0805 [142]
3 years ago
13

What is the remainder when x+ - 2x2 – 3x – 7 is divided by x + 2?

Mathematics
1 answer:
guapka [62]3 years ago
4 0

x+-2*2-3x-7

x+4-3x-7

x+1.x-7

x.x-7

2x-7

You might be interested in
What equation is graphed in this figure?
aniked [119]

Based on the graph, the slope is -3, and the y-intercept is 1. So your equation should be:

y = -3x + 1

The answer is C

y + 2 = -3(x - 1)

y + 2 = -3x + 3

y = -3x + 1

5 0
3 years ago
Read 2 more answers
Derive the equation of the parabola with a focus at (2, −1) and a directrix of y = −one half.
yKpoI14uk [10]
Basically, the parabola has to have all points that are equidistant from the focus and the directrix, the directrix being a horizontal line, and the focus being a point given. To derive an equation from this you need to use the distance formula which I'm guessing you already know because you're already in precalc.
The gist of it is that we have a random point on the parabola (x,y), and the point (x,y) will be equidistant from both the focus and the directrix. If we use the distance formula, you get something like this:
\sqrt{(y-(- \frac{1}{2} ))^2} = \sqrt{(x-2)^2+(y-(-1)^2}
The square root of y-(-1/2) coming from the directrix, and the righthand side of the equal sign being derived from the focus.
All you need to do is simplify now!
<span>(y+\frac{1}{2})^2 = (x-2)^2+(y+1)^2 \\\ y^2+y+ \frac{1}{4} = x^2-4x+4 + y^2+2y+1 \\\ -y-\frac{3}{4} = x^2-4x+4 \\\ -y-\frac{3}{4} = (x-2)^2 \\\ -y = (x-2)^2+\frac{3}{4} \\\ y = -(x-2)^2-\frac{3}{4}
</span>
Hope I helped! 
3 0
3 years ago
Read 2 more answers
I do not get question 11 please help me!
Inessa [10]

Triangle QRS has 3 congruent sides, so it is equilateral and equiangular.

The sum of the measures of the angles of a triangle is 180 deg, so each angle of triangle QRS is 60 deg.

Angle RQS measures 60 degrees and forms a linear pair with angle PQS. Angles in a linear pair a supplementary. That makes the measure of angle PQS 120 deg. leaving only 60 degrees as the sum of the measures of angles PSQ and SPQ. Triangle PQS is isosceles since sides PQ and QS are congruent. The angles opposite congruent sides of a triangle are congruent, so angle PSQ is congruent to angle SPQ. That means angles PSQ and SPQ measure 30 deg each.

m<PSR = m<PSQ + m<QSR = 30 + 60 = 90

m<PQS = 120

m<PSR : m<PQS = 90 : 120 = 3 : 4

No choice shows the correct answer.

7 0
3 years ago
Hi can someone plz help me ty btw happy holidays
Colt1911 [192]

Answer:

She will have 16 begonia plants the fourth year.

Step-by-step explanation:

0   1   2   3   4

1    3   9  27  81

Please mark brainliest

8 0
3 years ago
Read 2 more answers
Multiply: (5x − 2)(4x2 − 3x − 2)?
Ronch [10]

Answer:

-140

Step-by-step explanation:

Are thoses X's multiplication

6 0
3 years ago
Other questions:
  • G(x)=(5-x)/(2x-1) f(x)= (x+5)/(2x+1) what is g(f(x))
    8·1 answer
  • Given △RST ~ △RQP. Triangle P Q R. Side P Q is 8 centimeters and side P R is 12 centimeters. Triangle S R T. Side S T is x centi
    15·2 answers
  • HI. Can you help???
    12·1 answer
  • 8/10 visual representation
    10·1 answer
  • Consider the ODE, dy dx = y 2 1 + x (2) subject to condition y = 1 when x = 0, use your Euler code from class (modified if neces
    10·1 answer
  • What is 604,000,000 expressed in scientific notation?
    6·2 answers
  • A music player was marked down by 1/4 of the original price. If the sales price is $128, what is the original price? If the musi
    8·1 answer
  • Triangle ABC has the following measurements.<br><br> m <br> write an equation and solve for x
    12·1 answer
  • What is the formula of a²—b²?
    13·2 answers
  • In ΔRST, r = 530 cm, s = 530 cm and t=950 cm. Find the measure of ∠T to the nearest 10th of a degree.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!