1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zalisa [80]
3 years ago
10

A solution for direct IV bolus injection contains 125 mg of drug in each 25 mL of injection. What is the concentration of drug i

n terms of μg/μL?
Mathematics
1 answer:
Burka [1]3 years ago
3 0

Answer:

The concentration of the drug is 5ug/uL

Step-by-step explanation:

The first step of the problem is the conversion of the quantities of the drug in mg and mL to ug and uL.

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease.

Unit conversion problems, like this one, is an example of a direct relationship between measures.

First step: Conversion of 125mg to ug

Each mg has 1,000ug. So:

1mg - 1,000ug

125mg - xug

x = 1,000*125

x = 125,000 ug

Second step: Conversion of 25 mL to uL

Each mL has 1,000uL. So:

1mL - 1,000uL

25mL - x uL

x = 25*1,000

x = 25,000uL

Concentration:

C = \frac{125,000 ug}{25,000uL} = 5ug/uL

The concentration of the drug is 5ug/uL

You might be interested in
Solve the system of equations.<br><br><br><br> −2x+5y =−35<br> 7x+2y =25
Otrada [13]

Answer:

The equations have one solution at (5, -5).

Step-by-step explanation:

We are given a system of equations:

\displaystyle{\left \{ {{-2x+5y=-35} \atop {7x+2y=25}} \right.}

This system of equations can be solved in three different ways:

  1. Graphing the equations (method used)
  2. Substituting values into the equations
  3. Eliminating variables from the equations

<u>Graphing the Equations</u>

We need to solve each equation and place it in slope-intercept form first. Slope-intercept form is \text{y = mx + b}.

Equation 1 is -2x+5y = -35. We need to isolate y.

\displaystyle{-2x + 5y = -35}\\\\5y = 2x - 35\\\\\frac{5y}{5} = \frac{2x - 35}{5}\\\\y = \frac{2}{5}x - 7

Equation 1 is now y=\frac{2}{5}x-7.

Equation 2 also needs y to be isolated.

\displaystyle{7x+2y=25}\\\\2y=-7x+25\\\\\frac{2y}{2}=\frac{-7x+25}{2}\\\\y = -\frac{7}{2}x + \frac{25}{2}

Equation 2 is now y=-\frac{7}{2}x+\frac{25}{2}.

Now, we can graph both of these using a data table and plotting points on the graph. If the two lines intersect at a point, this is a solution for the system of equations.

The table below has unsolved y-values - we need to insert the value of x and solve for y and input these values in the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & a \\ \cline{1-2} 1 & b \\ \cline{1-2} 2 & c \\ \cline{1-2} 3 & d \\ \cline{1-2} 4 & e \\ \cline{1-2} 5 & f \\ \cline{1-2} \end{array}

\bullet \ \text{For x = 0,}

\displaystyle{y = \frac{2}{5}(0) - 7}\\\\y = 0 - 7\\\\y = -7

\bullet \ \text{For x = 1,}

\displaystyle{y=\frac{2}{5}(1)-7}\\\\y=\frac{2}{5}-7\\\\y = -\frac{33}{5}

\bullet \ \text{For x = 2,}

\displaystyle{y=\frac{2}{5}(2)-7}\\\\y = \frac{4}{5}-7\\\\y = -\frac{31}{5}

\bullet \ \text{For x = 3,}

\displaystyle{y=\frac{2}{5}(3)-7}\\\\y= \frac{6}{5}-7\\\\y=-\frac{29}{5}

\bullet \ \text{For x = 4,}

\displaystyle{y=\frac{2}{5}(4)-7}\\\\y = \frac{8}{5}-7\\\\y=-\frac{27}{5}

\bullet \ \text{For x = 5,}

\displaystyle{y=\frac{2}{5}(5)-7}\\\\y=2-7\\\\y=-5

Now, we can place these values in our table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

As we can see in our table, the rate of decrease is -\frac{2}{5}. In case we need to determine more values, we can easily either replace x with a new value in the equation or just subtract -\frac{2}{5} from the previous value.

For Equation 2, we need to use the same process. Equation 2 has been resolved to be y=-\frac{7}{2}x+\frac{25}{2}. Therefore, we just use the same process as before to solve for the values.

\bullet \ \text{For x = 0,}

\displaystyle{y=-\frac{7}{2}(0)+\frac{25}{2}}\\\\y = 0 + \frac{25}{2}\\\\y = \frac{25}{2}

\bullet \ \text{For x = 1,}

\displaystyle{y=-\frac{7}{2}(1)+\frac{25}{2}}\\\\y = -\frac{7}{2} + \frac{25}{2}\\\\y = 9

\bullet \ \text{For x = 2,}

\displaystyle{y=-\frac{7}{2}(2)+\frac{25}{2}}\\\\y = -7+\frac{25}{2}\\\\y = \frac{11}{2}

\bullet \ \text{For x = 3,}

\displaystyle{y=-\frac{7}{2}(3)+\frac{25}{2}}\\\\y = -\frac{21}{2}+\frac{25}{2}\\\\y = 2

\bullet \ \text{For x = 4,}

\displaystyle{y=-\frac{7}{2}(4)+\frac{25}{2}}\\\\y=-14+\frac{25}{2}\\\\y = -\frac{3}{2}

\bullet \ \text{For x = 5,}

\displaystyle{y=-\frac{7}{2}(5)+\frac{25}{2}}\\\\y = -\frac{35}{2}+\frac{25}{2}\\\\y = -5

And now, we place these values into the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

When we compare our two tables, we can see that we have one similarity - the points are the same at x = 5.

Equation 1                  Equation 2

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}                 \begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

Therefore, using this data, we have one solution at (5, -5).

4 0
3 years ago
What is the circumference of a circle with a diameter of 5 feet? Use 3.14 for pie.
sammy [17]

Answer:

A. 15.7 ft

Step-by-step explanation:

circumference = 2πr

radius= half the diameter 5/2=2.5

2(3.14)(2.5)=15.7 ft

8 0
3 years ago
A plumber charged $12 for 15 minutes of work. At this rate what would the plumber charge for 1 hour of work?
hjlf

Answer: $48 for an hour of work

Step-by-step explanation: 1 hour is 60 minutes

<u></u>\frac{60 minutes}{15 minutes} =4<u></u>

4 x $12 =$48

7 0
3 years ago
Read 2 more answers
Classify each angle of the degrees
zhuklara [117]

Answer:

acute

right angle or obtuse

obtuse

Step-by-step explanation:

those are the answers

6 0
3 years ago
A plant grows the same amount every week. Which graph matches the situation described? b e .​
dem82 [27]

Answer:

Option A

Step-by-step explanation:

Let the height of plant is 'b' units.

Graph representing the height of the plant will have y-intercept = b units

Since, the plant is growing at the same rate every week,

And growth of the plant is continuous.

Therefore, graph will be a straight line and continuous.

Since, the height of the plant is always increasing,

Slope of the line will be positive.

Option A will be the answer.

8 0
3 years ago
Other questions:
  • A packing box in the shape of a cube measures 8 inches on each side. How many cubic zirconia inches does the box hold?
    5·1 answer
  • The continuous change in position of an object relative to a point of reference is?
    9·1 answer
  • Which is a graph of a proportional relationship?
    5·1 answer
  • 5.241 divided by 3 please help me​
    9·2 answers
  • Which statements are true about the ordered pair (1,2) and the system of equations? y=-2x+4 7x-2y=3 select all that apply. A.Whe
    8·1 answer
  • Which expression is equivalent to 12/15?<br> A. 25÷12<br> B. 12÷25<br> C. 12÷1/25<br> D. 25÷1/12
    6·1 answer
  • Show the steps to get full credit<br> 3 (2x + 2) = 18 + 4(x - 5)
    5·2 answers
  • A company advertises on a website
    11·1 answer
  • The price of an item has been reduced by 35% . The original price was $45.
    15·1 answer
  • Sketch a possible curve of f(x) given the graphs of f ‘ (x) and f’’ (x) below:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!