1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
3 years ago
14

What is the area of this figure? ___ units^2

Mathematics
1 answer:
MrRissso [65]3 years ago
7 0

Answer:

Total Area = 42

Step-by-step explanation:

|x| means the positive value of x. So |-5| = 5

Top Triangle

H: The height is the maximum y value from 4 to 2 or (4 - 2) which is 2. The x value for both points is the same (-1) and so the distance is unaffected by the x value.

B: The base line is the x value from -5 to 2. That is a little trickier. You can say it is |-5| + 2 = 7

Area: The formula for the area is 1/2 B * H

<u><em>Area = 1/2 7*2 = 7 units^2</em></u>

Rectangle

L = B: The Length of the rectangle = the base of the triangle (7 units.

W: The y value from 2 to |-2| or 2 + 2 = 4

Area: the formula for the area is A = L*W

Area = L*W

Area = 7 *4 = 28 units^2

Bottom Triangle

B: The base of this triangle = B of the top triangle. The numbers are exactly the same.

H: |-4| - | - 2 |

H: 4 - 2

H: 2

Area: The area = 1/2 * 2 * 7 = 7 square units.

Total Area

Total Area = 7 + 28 + 7 = 42

You might be interested in
Pls help out need answers quick
maw [93]

Answer: answer is 8 because -5 + 1 = -4 then + 10 = 4

8 0
3 years ago
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
16
vagabundo [1.1K]

Answer:

<h2>58°</h2>

Step-by-step explanation:

We will use the tangent function since we know the opposite and adjacent sides.

Tangent = opposite/adjacent

Tan(e) = 16/10

Tan(e) = 1.6

Use the inverse tangent function to find the angle.

Arctan (1.6) = 57.9946168

Rounding this we get: 58°

4 0
3 years ago
Read 2 more answers
Estimate.<br> 4,754 dived by 1.9 =
irinina [24]

Answer:

2502.1

Step-by-step explanation:

4754/1.9

= 2,502.1

Hence the andwer is 2502.1

8 0
3 years ago
Solve the system by graphing.<br><br> 3x+8y=16<br><br> 3x+8y=-64
Gnesinka [82]

<em>-3x-y=10</em>

<em>4x-4y=8</em>

<em>or</em>

<em>y = -3x - 10 </em>

<em>P(0,-10) and P(-2, -4) on this line: Plot and connect with the Line.</em>

<em></em>

<em> </em>

<em>y = x - 2</em>

<em>P(0, -2) and (2,0) on this line: Plot and connect with the Line.</em>

<em>P(-2,-4) is the ordered pair that is the solution for this system of EQs</em>

<em>On may CHECK by substituting x= -2 and y = -4 into the EQs of these Lines</em>

<em></em>

<em>Hope this helps!!!</em>

7 0
3 years ago
Other questions:
  • There are 47 people attending a play at an outdoor theater. There are 11 groups of people sitting in groups of 3 or 5. How many
    10·2 answers
  • What is the value of h in the equation 3h-4=15+2?
    7·1 answer
  • Drag the expressions to show the order of their quotients from least to greatest
    9·1 answer
  • What is the slope of the line? <br> -2/5 <br> 2/5 <br> 5/2 <br> 1/3
    7·2 answers
  • There are two pencils.One is 14 cm long,the other is x cm if x=10, what is the total length of the two pencils​
    15·1 answer
  • Solve: 15x - 12 + 7 x + 6 = 60
    12·2 answers
  • HELP, i really need it.
    6·1 answer
  • What is The answer to this problem -k+16-12k
    14·1 answer
  • I need some serious help rn, i got stuck
    11·2 answers
  • A hot dog costs $1 at the ballpark. Which equation shows the total cost, C, of n hot dogs?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!