Remember that

so

(a+ b)^2 = a^2 + 2ab + b^2
1. x^2 + 2x*9i + (9i)^2 = x^2 + 18xi - 81
2. x^2 + 2x*(3+5i)+ (3+5i)^2 = x^2 + 6x + 10xi+ 9+30i-25 = x^2 - 16 + 30i + 6x + 10xi
---------------------------------------------------------------------------------------
Question
---------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------
Multiply the constant: 12 x (-5/6)
---------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------
Multiply the x (we add the power together when we multiply)
---------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------
Answer: -10x⁷y²---------------------------------------------------------------------------------------
Answer:
i believe it's .0386
Step-by-step explanation:
You can solve for the velocity and position functions by integrating using the fundamental theorem of calculus:
<em>a(t)</em> = 40 ft/s²
<em>v(t)</em> = <em>v </em>(0) + ∫₀ᵗ <em>a(u)</em> d<em>u</em>
<em>v(t)</em> = -20 ft/s + ∫₀ᵗ (40 ft/s²) d<em>u</em>
<em>v(t)</em> = -20 ft/s + (40 ft/s²) <em>t</em>
<em />
<em>s(t)</em> = <em>s </em>(0) + ∫₀ᵗ <em>v(u)</em> d<em>u</em>
<em>s(t)</em> = 10 ft + ∫₀ᵗ (-20 ft/s + (40 ft/s²) <em>u</em> ) d<em>u</em>
<em>s(t)</em> = 10 ft + (-20 ft/s) <em>t</em> + 1/2 (40 ft/s²) <em>t</em> ²
<em>s(t)</em> = 10 ft - (20 ft/s) <em>t</em> + (20 ft/s²) <em>t</em> ²