1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
11

Simply -3(y+2)2-5+6 y

Mathematics
1 answer:
ira [324]3 years ago
6 0

Answer:

-17

Step-by-step explanation:

-3(y + 2)2 - 5 + 6y    Distribute the -3 to the (y + 2)

(-3y - 6)2 - 5 + 6y     Distribute the 2 to the (-3y - 6)

-6y -12 - 5 + 6y         Combine like terms

-12 - 5                        Subtract

-17

You might be interested in
Exercise 3.9.101: Find a particular solution to x 0 = 5x + 4y+ t, y 0 = x + 8y−t, a) using integrating factor method, b) using e
enot [183]

In matrix form, the ODE is given by

\underbrace{\begin{bmatrix}x'\\y'\end{bmatrix}}_{\vec x'}=\underbrace{\begin{bmatrix}5&4\\1&8\end{bmatrix}}_A\underbrace{\begin{bmatrix}x\\y\end{bmatrix}}_{\vec x}+t\underbrace{\begin{bmatrix}1\\-1\end{bmatrix}}_{\vec f}

a. Move A\vec x to the left side and multiply both sides by the integrating factor, the matrix exponential of -A, e^{-At}:

e^{-At}\vec x'-Ae^{-At}\vec x=te^{-At}\vec f

Condense the left side as the derivative of a product:

\left(e^{-At}\vec x\right)=te^{-At}\vec f

Integrate both sides and multipy by e^{At} to solve for \vec x:

e^{-At}\vec x=\displaystyle\left(\int te^{-At}\,\mathrm dt\right)\vec f\implies\vec x=\displaystyle e^{At}\left(\int te^{-At}\,\mathrm dt\right)\vec f

Finding e^{\pm At} requires that we diagonalize A.

A has eigenvalues 4 and 9, with corresponding eigenvectors \begin{bmatrix}-4&1\end{bmatrix}^\top and \begin{bmatrix}1&1\end{bmatrix}^\top (explanation for this in part (b)), so we have

A=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4&0\\0&9\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4^n&0\\0&9^n\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\dfrac15\begin{bmatrix}4^{n+1}+9^n&4\cdot9^n-4^{n+1}\\9^n-4^n&4^n+4\cdot9^n\end{bmatrix}

\implies e^{\pm At}=\dfrac15\begin{bmatrix}4e^{\pm4t}+e^{\pm9t}&4e^{\pm9t}-4e^{\pm4t}\\e^{\pm9t}-e^{\pm4t}&e^{\pm4t}+4e^{\pm9t}\end{bmatrix}

\implies\vec x=\dfrac15e^{At}\begin{bmatrix}C_1\\C_2\end{bmatrix}-\dfrac1{216}\begin{bmatrix}72t+20\\-36t-7\end{bmatrix}

b. Find the eigenvalues of A:

\det(A-\lambda I_2)=\begin{vmatrix}5-\lambda&4\\1&8-\lambda\end{vmatrix}=\lambda^2-13\lambda+36=0

\implies(\lambda-4)(\lambda-9)=0\implies\lambda_1=4,\lambda_2=9

Let \vec\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top and \vec\theta=\begin{bmatrix}\theta_1&\theta_2\end{bmatrix}^\top be the corresponding eigenvectors.

For \lambda_1=4, we have

\begin{bmatrix}1&4\\1&4\end{bmatrix}\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

which means we can pick \eta_1=-4 and \eta_2=1.

For \lambda_2=9, we have

\begin{bmatrix}-4&4\\1&-1\end{bmatrix}\begin{bmatrix}\theta_1\\\theta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

so we pick \theta_1=\theta_2=1.

Then the characteristic solution to the system is

\vec x_c=C_1e^{\lambda_1t}\vec\eta+C_2e^{\lambda_2t}\vec\theta

\vec x_c=C_1e^{4t}\begin{bmatrix}-4\\1\end{bmatrix}+C_2e^{9t}\begin{bmatrix}1\\1\end{bmatrix}

c. Now we find the particular solution with undetermined coefficients.

The nonhomogeneous part of the ODE is a linear function, so we can start with assuming a particular solution of the form

\vec x_p=\vec at+\vec b\implies\vec x_p'=\vec a

Substituting these into the system gives

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\left(\begin{bmatrix}a_1\\a_2\end{bmatrix}t+\begin{bmatrix}b_1\\b_2\end{bmatrix}\right)+\begin{bmatrix}1\\-1\end{bmatrix}t

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\begin{bmatrix}a_1t+b_1\\a_2t+b_2\end{bmatrix}+\begin{bmatrix}t\\-t\end{bmatrix}

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}(5a_1+4a_2+1)t+(5b_1+4b_2)\\(a_1+8a_2-1)t+(b_1+8b_2)\end{bmatrix}

\implies\begin{cases}5a_1+4a_2=-1\\5b_1+4b_2=a_1\\a_1+8a_2=1\\b_1+8b_2=a_2\end{cases}\implies a_1=-\dfrac13,a_2=\dfrac16,b_1=-\dfrac5{54},b_2=\dfrac7{216}

Put everything together to get a solution

\vec x=\vec x_c+\vec x_p

that should match the solution in part (a).

8 0
4 years ago
To either side kneel two high-court functionaries, dressed very like the Oba, but with plainer headdresses and fewer neck-rings.
Luden [163]
"Plainer headdresses and fewer neck-rings”“Belts hung with small crocodile heads”“The heads and shoulders of two tiny Europeans”
7 0
3 years ago
Read 2 more answers
Tickets for the karaoke talent show sponsored by the Speech Club were priced at $3 for adults and $2 for students. The club trea
vfiekz [6]

Answer:

50 adults and 250 students tickets were sold

Step-by-step explanation:

Given data

Let the number of adults be x and students be y

3x+2y=650------1

x+y= 300---------2

from 2

x= 300-y

put the value of x in 1

3(300-y)+2y= 650

900-3y+2y= 650

900-y= 650

900-650= y

y=250

put the value of y in 2

x+250= 300

x= 300-250

x= 50

Hence 50 adults and 250 students tickets were sold

5 0
3 years ago
Can anyone help me? no links
NNADVOKAT [17]

Answer:

Step-by-step explanation:

Sum: addition

Difference: subtraction

Product: multiplication

Number                    Sum                    Difference                    Product

1, 4                         1 + 4 = 5                     4 - 1 = 3                       1 * 4 = 4

2, 8                       2 + 8 = 10                   8 - 2 = 6                      2 * 8 = 16

Hope this helps!

3 0
3 years ago
X^2-5x+2 x 3x^2 +2x +3
Katen [24]

Answer:

3x^4 - 13x^3 - x^2 - 11x + 6.

Step-by-step explanation:

x^2-5x+2 x 3x^2 +2x +3

= x^2(3x^2 +2x +3)  - 5x(3x^2 +2x +3) + 2(3x^2 +2x +3)

=  3x^4 + 2x^3 + 3x^2 - 15x^3 - 10x^2 - 15x + 6x^2 + 4x + 6

Adding like terms:

= 3x^4 - 13x^3 - x^2 - 11x + 6.

5 0
3 years ago
Other questions:
  • IVE BEEN ASKING SINCE YESTERDAY!! LITTERALLY!!! EXTREAMLY EASY I AM JUST AFRAID TO GET THIS WRONG SO IF YOU COULD TAKE A MINUTE
    8·1 answer
  • What must be true about any point that lies on the x axis
    6·2 answers
  • PLEASE HELP ME i beg you
    14·2 answers
  • Jennifer has a new sister named Chloe. Chloe is 16 months old and 80 cm long. Jenifers mom who is a pediatrician has been checki
    5·1 answer
  • 5. Express 12⁄16 in quarters. <br> a. 1⁄4<br> b. 1⁄3<br> c. 2⁄4<br> d. 3⁄4
    14·2 answers
  • I have a question<br> K^2-12k+23=0<br><br> What would the answer to this be
    13·1 answer
  • Lena made a scale drawing of an arcade. She used the scale 1 inch : 4 feet. If an air hockey table is 2 inches long in the drawi
    10·1 answer
  • Please help it will be brainlist as long as it’s right
    15·2 answers
  • An equation is shown below:
    10·1 answer
  • Could i have some super super quick help? :(( (part iv is not necessary)
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!