![\bf \cfrac{1}{1-sin(x)}+\cfrac{1}{1+sin(x)}=\cfrac{2}{cos^2(x)} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{using the LCD of [1-sin(x)][1+sin(x)]}}{\cfrac{[1+sin(x)]1~~+~~[1-sin(x)]1}{\underset{\textit{difference of squares}}{[1-sin(x)][1+sin(x)]}}} \\\\\\ \cfrac{1+sin(x)+1-sin(x)}{1^2-sin^2(x)}\implies \cfrac{1+sin(x)+1-sin(x)}{1-sin^2(x)}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B1%7D%7B1-sin%28x%29%7D%2B%5Ccfrac%7B1%7D%7B1%2Bsin%28x%29%7D%3D%5Ccfrac%7B2%7D%7Bcos%5E2%28x%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20LCD%20of%20%5B1-sin%28x%29%5D%5B1%2Bsin%28x%29%5D%7D%7D%7B%5Ccfrac%7B%5B1%2Bsin%28x%29%5D1~~%2B~~%5B1-sin%28x%29%5D1%7D%7B%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5B1-sin%28x%29%5D%5B1%2Bsin%28x%29%5D%7D%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1%2Bsin%28x%29%2B1-sin%28x%29%7D%7B1%5E2-sin%5E2%28x%29%7D%5Cimplies%20%5Ccfrac%7B1%2Bsin%28x%29%2B1-sin%28x%29%7D%7B1-sin%5E2%28x%29%7D)
recall that 1 - sin²(θ) = cos²(θ).
Answer:
w4riqh3w4uonq3vtnq9358vtv33174
Step-by-step explanation:
Answer:
3x² is "monomial" according to the number of term(s) and "Quadratic" based on degree
3 (4*12)
four multiply by 12 then multiply by 3
Answer:
15.04
Step-by-step explanation:
.06 % of 16 is .96 and 16- .96= 15.04
Hope this helps!