Answer:
52
(also if u can, can u please answer my english question ive literally asked like 10 other people)
Step-by-step explanation:
The graph of f(x) is shifted up by 5 units to get g(x)
<h3>How to compare the functions?</h3>
The functions are given as:
g(x) = x + 5
f(x) = x
Substitute f(x) = x in g(x) = x + 5
So, we have:
g(x) = f(x) + 5
The above means that the graph of f(x) is shifted up by 5 units to get g(x)
Read more about function transformation at:
brainly.com/question/13810353
#SPJ1
The answer is 42/3
4 2/3 × 6 1/2= 30.33 (30 1/3)
THE ANSWER IS B 0 PLS MARK ME BRALIEST
Check the picture below.
![\stackrel{\textit{\Large Areas}}{\stackrel{triangle}{\cfrac{1}{2}(6)(6)}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}\pi (3)^2}}\implies \boxed{18+4.5\pi} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{pythagorean~theorem}{CA^2 = AB^2 + BC^2\implies} CA=\sqrt{AB^2 + BC^2} \\\\\\ CA=\sqrt{6^2+6^2}\implies CA=\sqrt{6^2(1+1)}\implies CA=6\sqrt{2} \\\\\\ \stackrel{\textit{\Large Perimeters}}{\stackrel{triangle}{(6+6\sqrt{2})}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}2\pi (3)}}\implies \boxed{6+6\sqrt{2}+3\pi}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%286%29%286%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20%283%29%5E2%7D%7D%5Cimplies%20%5Cboxed%7B18%2B4.5%5Cpi%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bpythagorean~theorem%7D%7BCA%5E2%20%3D%20AB%5E2%20%2B%20BC%5E2%5Cimplies%7D%20CA%3D%5Csqrt%7BAB%5E2%20%2B%20BC%5E2%7D%20%5C%5C%5C%5C%5C%5C%20CA%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%5Cimplies%20CA%3D%5Csqrt%7B6%5E2%281%2B1%29%7D%5Cimplies%20CA%3D6%5Csqrt%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Perimeters%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%286%2B6%5Csqrt%7B2%7D%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D2%5Cpi%20%283%29%7D%7D%5Cimplies%20%5Cboxed%7B6%2B6%5Csqrt%7B2%7D%2B3%5Cpi%7D)
notice that for the perimeter we didn't include the segment BC, because the perimeter of a figure is simply the outer borders.