1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
asambeis [7]
3 years ago
15

How to simplify √12​

Mathematics
2 answers:
frez [133]3 years ago
5 0

Answer:

2√3.

Step-by-step explanation:

Look for perfect squares in the factors of 12:

12 = 2*2*3

2*2 = 4 and √4 = 2.

so  √12 = √4 * √3

= 2√3.

antoniya [11.8K]3 years ago
4 0

Answer:

Step-by-step explanation:

√12 = √(4 × 3

√(4 × 3) = √4 × √3

And the square root of 4 is 2:

√4 × √3 = 2√3

So √12 is simpler as 2√3

You might be interested in
Richard deposits $237.95 every month into his mortgage. At the end of 30 years, he has a balance of $183,710.77. What interest h
77julia77 [94]

Answer:

$98,048.77

Step-by-step explanation:

First you want to find out how much he has put in without interest so you would do 237.95*12 to figure out how much he puts in per year then times that number by 30 to figure out how much he has put in in total, after this you subtract this total from the 183,710.77 to get the total amount of interest

3 0
3 years ago
Class 8 squares and square roots without adding find the sum of a) 1+3+5+7+9+11+13+15+17.
Nata [24]

Answer:

given

n=9

a=1

d=3-1=2

Step-by-step explanation:

now , by formula,

sn = n/2(2a+(n-1)d)

= 9/2(2×1+(9-1)×2)

=9/2×18

=81

8 0
3 years ago
karen drove 3/4 of a mile in 1/60 of an hour .At this rate,how many miles would she drive in one hour
amid [387]

Answer:

45 miles

Step-by-step explanation:

1/60 of one hour (60 minutes) equates to 1 minute

Karen is driving 3/4 of a mile in 1 minute to multiply 3/4 and 60 to get 45 miles

6 0
3 years ago
A random variable X with a probability density function () = {^-x > 0
Sliva [168]

The solutions to the questions are

  • The probability that X is between 2 and 4 is 0.314
  • The probability that X exceeds 3 is 0.199
  • The expected value of X is 2
  • The variance of X is 2

<h3>Find the probability that X is between 2 and 4</h3>

The probability density function is given as:

f(x)= xe^ -x for x>0

The probability is represented as:

P(x) = \int\limits^a_b {f(x) \, dx

So, we have:

P(2 < x < 4) = \int\limits^4_2 {xe^{-x} \, dx

Using an integral calculator, we have:

P(2 < x < 4) =-(x + 1)e^{-x} |\limits^4_2

Expand the expression

P(2 < x < 4) =-(4 + 1)e^{-4} +(2 + 1)e^{-2}

Evaluate the expressions

P(2 < x < 4) =-0.092 +0.406

Evaluate the sum

P(2 < x < 4) = 0.314

Hence, the probability that X is between 2 and 4 is 0.314

<h3>Find the probability that the value of X exceeds 3</h3>

This is represented as:

P(x > 3) = \int\limits^{\infty}_3 {xe^{-x} \, dx

Using an integral calculator, we have:

P(x > 3) =-(x + 1)e^{-x} |\limits^{\infty}_3

Expand the expression

P(x > 3) =-(\infty + 1)e^{-\infty}+(3+ 1)e^{-3}

Evaluate the expressions

P(x > 3) =0 + 0.199

Evaluate the sum

P(x > 3) = 0.199

Hence, the probability that X exceeds 3 is 0.199

<h3>Find the expected value of X</h3>

This is calculated as:

E(x) = \int\limits^a_b {x * f(x) \, dx

So, we have:

E(x) = \int\limits^{\infty}_0 {x * xe^{-x} \, dx

This gives

E(x) = \int\limits^{\infty}_0 {x^2e^{-x} \, dx

Using an integral calculator, we have:

E(x) = -(x^2+2x+2)e^{-x}|\limits^{\infty}_0

Expand the expression

E(x) = -(\infty^2+2(\infty)+2)e^{-\infty} +(0^2+2(0)+2)e^{0}

Evaluate the expressions

E(x) = 0 + 2

Evaluate

E(x) = 2

Hence, the expected value of X is 2

<h3>Find the Variance of X</h3>

This is calculated as:

V(x) = E(x^2) - (E(x))^2

Where:

E(x^2) = \int\limits^{\infty}_0 {x^2 * xe^{-x} \, dx

This gives

E(x^2) = \int\limits^{\infty}_0 {x^3e^{-x} \, dx

Using an integral calculator, we have:

E(x^2) = -(x^3+3x^2 +6x+6)e^{-x}|\limits^{\infty}_0

Expand the expression

E(x^2) = -((\infty)^3+3(\infty)^2 +6(\infty)+6)e^{-\infty} +((0)^3+3(0)^2 +6(0)+6)e^{0}

Evaluate the expressions

E(x^2) = -0 + 6

This gives

E(x^2) = 6

Recall that:

V(x) = E(x^2) - (E(x))^2

So, we have:

V(x) = 6 - 2^2

Evaluate

V(x) = 2

Hence, the variance of X is 2

Read more about probability density function at:

brainly.com/question/15318348

#SPJ1

<u>Complete question</u>

A random variable X with a probability density function f(x)= xe^ -x for x>0\\ 0& else

a. Find the probability that X is between 2 and 4

b. Find the probability that the value of X exceeds 3

c. Find the expected value of X

d. Find the Variance of X

7 0
2 years ago
Given: y = 3x - 4. what is the x-intercept? (0, -4) (0, 4/3) (4/3, 0)
ankoles [38]
X intercept is 4/3 because you plug zeros in for y to find the y intercept
4 0
3 years ago
Other questions:
  • Equations.
    9·2 answers
  • A movie theater charges $5 for an adult’s ticket and $2 for a child’s ticket. one saturday, the theater sold 785 tickets for $32
    5·2 answers
  • Which of these groups is in ascending order?
    7·1 answer
  • Which number is irrational
    10·2 answers
  • Need help 2m+3 /2-17/4 &lt;m+2/8
    10·1 answer
  • sarah thinks of a positive number she calculates that the square of the number is 256 what is the square rootof the number​
    12·1 answer
  • Javier walks from his house to the zoo at a constant
    7·1 answer
  • PLZZZ HELP ME WITH THIS
    12·1 answer
  • Marie is riding her bike at 15 miles per hour. What is her rate of speed in feet per second?
    13·1 answer
  • using a special discount you download 15 songs for $10.86 the regular price of each song is $0.89. What is the percent of the di
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!