Numerous degenerative neurological conditions, most notably Parkinson's disease, have been linked to an excessive buildup of alpha synuclein (a-syn) in the brain. Intraneuronal inclusions, often known as Lewy bodies, are neuropathological characteristics seen in Parkinson's disease, Lewy body dementia, and other synucleopathies. The aggregation of a-syn is their main structural component. A-syn accumulation, aggregation, and ensuing Lewy body formation can be attributed to a variety of biological processes. These include genetic changes in parkin, synuclein, or the deubiquitinating enzyme ubiquitin C-terminal hydrolase (UCH-L1), which results in less efficient removal of a-syn via the ubiquitin proteasomal pathway (UPP). Additionally, environmental variables and an age-related decline in antioxidant defense mechanisms that heighten oxidative stress and can have an impact on the formation or clearance of a-syn are intracellular insults.
We focused on changes in the aggregation and clearance of a-syn as impacted by the UPP and the oxidative stress pathways in our dynamic models of a-syn processing in both normal and various disease states. A free radical profile similar to that observed in vivo after exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is produced during simulation of enhanced oxidative stress (MPTP). To replicate the kinetics of a-syn that correlates to the neuropathology reported for the sporadic and hereditary types of Parkinson's disease, different model parameters of oxidative stress, UPP failure, or both routes are used. With the use of this in silico model, it is possible to evaluate the kinetics of pathway elements and more accurately identify and validate key pharmaceutical targets.
Learn more about Parkinson's disease brainly.com/question/28169444
#SPJ4
Answer:
The shape of an enzyme also depends on its temperature. When enzymes get too warm, they get too loose. And when they get too cold, then they get too tight. <u> Since the function of this enzyme depends on its temperature, the chemical reaction will only take place when the temperature is just right.</u>
<u />
<u />
<u>Hope this helped</u>
Answer:
Ribosomes here is your answer
The answer to the question "Upon realizing that your remote is not working even after replacing the batteries you decided to use, this process is called the experiment. You are experimenting on what would happen to the remote if you are going to change the batteries, if it is going to work or not.
I think they have the answer to this online regents answer and a non regents answer