Explanation:
Primary succession is one of two types of biological and ecological succession of plant life, occurring in an environment in which new substrate devoid of vegetation and other organisms usually lacking soil, such as a lava flow or area left from retreated glacier, is deposited.[1] In other words, it is the gradual growth of an ecosystem over a longer period of time.[2][3]
Primary succession occurring over time. The soil depths increase with respect to the increase in decomposition of organic matter. and there is a gradual increase of species diversity in the ecosystem. The labels I-VII represent the different stages of primary succession. I-bare rocks, II-pioneers (mosses, lichen, algae, fungi), III-annual herbaceous plants, IV-perennial herbaceous plants and grasses, V-shrubs, VI-shade intolerant trees, VII-shade tolerant trees.
Primary succession on Rangitoto Island
In contrast, secondary succession occurs on substrate that previously supported vegetation before an ecological disturbance from smaller things like floods, hurricanes, tornadoes, and fires which destroyed the plant life.[4]
Glucose is broken down during fermentation anaerobically
I think the answer is <span>D) when evaluating a source for authority</span>
Answer:
The correct option is d) head.
Explanation:
Bicoid protein works as a transcription factor. It enters the nuclei of the embryos in early segmentation, where it activates the hunchback gene. In Drosophila, embryonic development begins at the time of fertilization. The sperm enters the mature oocyte through the micropile, a structure located in what will be the anterior region of the egg. Bicoid and hunchback mRNAs, protein products are critical for the formation of the head and thorax. Already in the early stages of oocyte development, certain mRNAs are located in specific regions of the oocyte: mRNA molecules encoding the Bicoid protein are preferentially located in the anterior region of the oocyte. Moderate levels of the bicoid protein are necessary to activate the formation of the thorax (i.e., the expression of the hunchback gene) but the formation of the head requires high concentrations of Bicoid, the promoters of a specific gap gene of the head must have sites of low affinity binding for Bicoid, so that this gene can be activated only in extremely high concentrations of Bicoid.
The lack of Bicoid protein affects the formation of the head and other structures in the anterior region of the oocyte.
Answer:
The autonomic nervous system is the main neural regulator of circulation and blood pressure in the short term and beat by beat and exerts its function through various reflexes that regulate vasomotor tone, heart rate and cardiac output. At the renal level, the renin–angiotensin–aldosterone system is possibly the most important in the maintenance of arterial homeostasis.
Explanation:
Blood pressure is regulated by a series of interrelated autonomic systems and humoral reflexes, which continually adjust the determining elements of the system (heart rate, stroke volume, total peripheral resistance and circulating volume).The effective circulating volume is controlled by a series of reflex systems, which obtain information about the perfusion pressure (baroreceptors in the carotid bulb and aortic arch), plasma osmolarity (hypothalamus) and urinary sodium (distal tubule).The kidney has its own self-regulatory mechanisms. The reduction in renal blood flow is detected at the level of the mesangial cells of the juxtaglomerular apparatus, starting the renin-angiotensin system. The increase in angiotensin II produces on the one hand local vasoconstriction, and on the other hand stimulates the production of aldosterone by the adrenal cortex with the consequent tubular reabsorption of sodium and water.Antidiuretic hormone or vasopressin (released from the hypothalamus by stimulation of arterial baroreceptors and also by stimulation of angiotensin II) also acts at the renal level, which acts as a powerful and water-saving vasoconstrictor in the distal tubule.