The length of the paintball machine could vary. If it is a square; then it would be 44.25 in. If it was a rectangle the answer Could be many different lengths, but one is 65 in (Width 23.5 in) I hope this helped ^^
Answer:
-4 +4 =0
Step-by-step explanation:
The sum of a number and its' additive inverse is 0
The additive inverse of -4 is 4
-4 +4 =0
Answer:
301.44 cubic units
Step-by-step explanation:
![volume \: of \: cone \\ \\ = \frac{1}{3}\pi {r}^{2} h \\ \\ = \frac{1}{3} \times 3.14 \times {(6)}^{2} \times 8 \\ \\ = \frac{1}{3} \times 3.14 \times 36 \times 8 \\ \\ = 3.14 \times 12 \times 8 \\ \\ = 301.44 \: {units}^{3} \\ \\ \red{ \bold{volume \: of \: cone = 301.44 \: {units}^{3}}}](https://tex.z-dn.net/?f=volume%20%5C%3A%20of%20%5C%3A%20cone%20%5C%5C%20%5C%5C%20%20%20%3D%20%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%7Br%7D%5E%7B2%7D%20%20h%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B1%7D%7B3%7D%20%20%5Ctimes%203.14%20%5Ctimes%20%20%7B%286%29%7D%5E%7B2%7D%20%20%5Ctimes%208%20%5C%5C%20%20%5C%5C%20%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%20%5Ctimes%203.14%20%5Ctimes%2036%20%5Ctimes%208%20%20%5C%5C%20%20%5C%5C%20%20%3D%203.14%20%5Ctimes%2012%20%5Ctimes%208%20%5C%5C%20%20%20%5C%5C%20%3D%20301.44%20%5C%3A%20%20%7Bunits%7D%5E%7B3%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Cred%7B%20%5Cbold%7Bvolume%20%5C%3A%20of%20%5C%3A%20cone%20%3D%20301.44%20%5C%3A%20%20%7Bunits%7D%5E%7B3%7D%7D%7D)
Answer:
B- doubling a cube
D- trisecting any angle
Step-by-step explanation:
APEX
Answer:
Step-by-step explanation:
we have
![y=-2x^2+4x+3](https://tex.z-dn.net/?f=y%3D-2x%5E2%2B4x%2B3)
This is the equation of a vertical parabola open downward
The vertex represent a maximum
Convert the quadratic equation into vertex form
step 1
Factor -2
![y=-2(x^2-2x)+3](https://tex.z-dn.net/?f=y%3D-2%28x%5E2-2x%29%2B3)
step 2
Complete the square
![y=-2(x^2-2x+1)+3+2](https://tex.z-dn.net/?f=y%3D-2%28x%5E2-2x%2B1%29%2B3%2B2)
![y=-2(x^2-2x+1)+5](https://tex.z-dn.net/?f=y%3D-2%28x%5E2-2x%2B1%29%2B5)
step 3
Rewrite as perfect squares
----> equation in vertex form
The vertex is the point (1,5)