The solution for the given system of equations x + 8y = -37, 4x + 8y = -52 is ![\left[\begin{array}{ccc}&5&\\\\&4&\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%265%26%5C%5C%5C%5C%264%26%5Cend%7Barray%7D%5Cright%5D)
Given,
System of equations as,
x + 8y = -37
4x + 8y = -52
We have to solve this by using the inverse of coefficient matrix of the equivalent matrix equation.
That is,
![A=\left[\begin{array}{ccc}a&&b\\\\c&&d\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26%26b%5C%5C%5C%5Cc%26%26d%5Cend%7Barray%7D%5Cright%5D)
![A^{-1} =\frac{1}{ad -bc} \left[\begin{array}{ccc}d&&-b\\\\-c&&a\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%5Cfrac%7B1%7D%7Bad%20-bc%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dd%26%26-b%5C%5C%5C%5C-c%26%26a%5Cend%7Barray%7D%5Cright%5D)
Now we can solve the equations.
Here we have,
x + 8y = -37
4x + 8y = -52
Now in matrix form,
![=\left[\begin{array}{ccc}&-37&\\\\&-52&\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%26-37%26%5C%5C%5C%5C%26-52%26%5Cend%7Barray%7D%5Cright%5D)
A X B
We know that,
![A^{-1} =\frac{1}{ad -bc} \left[\begin{array}{ccc}d&&-b\\\\-c&&a\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%5Cfrac%7B1%7D%7Bad%20-bc%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dd%26%26-b%5C%5C%5C%5C-c%26%26a%5Cend%7Barray%7D%5Cright%5D)
Therefore,
![A^{-1} = \frac{1}{(1X8)-(4X8)} \left[\begin{array}{ccc}8&&-8\\\\-4&&1\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7B%281X8%29-%284X8%29%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26%26-8%5C%5C%5C%5C-4%26%261%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{8-32} \left[\begin{array}{ccc}8&&-8\\\\-4&&1\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B8-32%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26%26-8%5C%5C%5C%5C-4%26%261%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{-24} \left[\begin{array}{ccc}8&&-8\\\\-4&&1\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B-24%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26%26-8%5C%5C%5C%5C-4%26%261%5Cend%7Barray%7D%5Cright%5D)
![=\left[\begin{array}{ccc}\frac{-8}{24} &&\frac{8}{24} \\\\\frac{4}{24} &&\frac{-1}{24} \end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B-8%7D%7B24%7D%20%26%26%5Cfrac%7B8%7D%7B24%7D%20%5C%5C%5C%5C%5Cfrac%7B4%7D%7B24%7D%20%26%26%5Cfrac%7B-1%7D%7B24%7D%20%5Cend%7Barray%7D%5Cright%5D)
Then,
![\left[\begin{array}{ccc}&x&\\\\&y&\end{array}\right] =](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%26x%26%5C%5C%5C%5C%26y%26%5Cend%7Barray%7D%5Cright%5D%20%3D)
![\left[\begin{array}{ccc}&\frac{37}{52} &\\\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%26%5Cfrac%7B37%7D%7B52%7D%20%26%5C%5C%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{24} \left[\begin{array}{ccc}-8&&8\\\\4&&-1\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B24%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%26%268%5C%5C%5C%5C4%26%26-1%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}&\frac{37}{52} &\\\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%26%5Cfrac%7B37%7D%7B52%7D%20%26%5C%5C%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{24} \left[\begin{array}{ccc}(-8X37)+(8X52)\\\\(4X37)+(-1X52)\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B24%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-8X37%29%2B%288X52%29%5C%5C%5C%5C%284X37%29%2B%28-1X52%29%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{24} \left[\begin{array}{ccc}-296+416\\\\148-52\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B24%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-296%2B416%5C%5C%5C%5C148-52%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{24} \left[\begin{array}{ccc}120\\\\96\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B24%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D120%5C%5C%5C%5C96%5Cend%7Barray%7D%5Cright%5D)
![=\left[\begin{array}{ccc}\frac{120}{24} \\\\\frac{96}{24} \end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B120%7D%7B24%7D%20%5C%5C%5C%5C%5Cfrac%7B96%7D%7B24%7D%20%5Cend%7Barray%7D%5Cright%5D)
![=\left[\begin{array}{ccc}5\\\\4\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C%5C%5C4%5Cend%7Barray%7D%5Cright%5D)
That is ![\left[\begin{array}{ccc}x\\\\y\end{array}\right] =\left[\begin{array}{ccc}5\\\\4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5C%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C%5C%5C4%5Cend%7Barray%7D%5Cright%5D)
Learn more about matrix equations here: brainly.com/question/27799804
#SPJ4
The question is incomplete. Completed question is given below:
Solve The System Of Equations By Using The Inverse Of The Coefficient Matrix Of The Equivalent Matrix Equation.
x + 8y = -37
4x + 8y = -52
Answer in simplest radical form would be 7.(:
I think the answer is A have a good day buddy
Answer: The second step for copying a line segment is to set the compass to the length of the line segment to be copied.
When copying a line segment, you must first create your starting point.
Then, you need to set your compass to the length of the line segment to be copied.
Finally, you can make an arc and finish your line segment.
The answer is the mean. In statistics, the standard deviation is a measure that is used to compute the amount of variation or distribution of a set of data values. In other words, standard deviation (also variance) are measures of the spread of the data around the mean. They summarize how near each observed data value is to the mean value. A low standard deviation indicates that the data points tend to be close to the mean (otherwise known as the expected value) of the set, while a high standard deviation indicates that the data points are vast over a wider range of values.