Answer:
a) <em> standard error of the mean =10.06</em>
<em>b) The margin of error = 17.3982</em>
<em>c) 95% of confidence intervals are </em>
<em></em><em></em>
<em>d) Lower limit of 95% of confidence interval = 89.6018</em>
<em>upper limit of 95% of confidence interval = 124.3982</em>
<em>The Population mean is lies between in these intervals</em>
<u>Step-by-step explanation:</u>
<u><em>Step(i)</em></u><u>:-</u>
Given sample size 'n' = 20
Given sample mean was found to be 107 bpm with a standard deviation of 45 bpm.
<em>Sample mean </em><em></em>
<em>Sample standard deviation (S) = 45 bpm</em>
<em>a) standard error of the mean is determined by</em>
<em> </em><em></em>
<em> S.E = 10.06</em>
<em>b) The margin of error is determined by</em>
<em></em><em></em>
<em>The degrees of freedom ν </em><em></em>
<em> </em>
<em></em><em></em>
<em></em><em></em>
<em>c) 95% of confidence intervals are determined by</em>
<em></em><em></em>
<em></em><em></em>
<em></em><em></em>
<em></em><em></em>
<em>d) </em>
<em>Lower limit of 95% of confidence interval = 89.6018</em>
<em>upper limit of 95% of confidence interval = 124.3982</em>
<em>The Population mean is lies between in these intervals</em>
<em></em>
<em></em>