Answer:
Jon was the better shooter.
Step-by-step explanation:
Converting the fractions to decimal form will enable us to compare the ratios:
18/19 = 0.9474
5/8 = 0.625
and we have 0.94
So the better shooter was the first one (0.9474) which is Jon.
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = 90° → A + B = 90° - C
→ C = 90° - (A + B)
Use the Double Angle Identity: cos 2A = 1 - 2 sin² A
→ sin² A = (1 - cos 2A)/2
Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]
Use the Product to Sum Identity: cos (A - B) - cos (A + B) = 2 sin A · sin B
Use the Cofunction Identities: cos (90° - A) = sin A
sin (90° - A) = cos A
<u>Proof LHS → RHS:</u>
LHS: sin² A + sin² B + sin² C

![\text{Sum to Product:}\quad 1-\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\cos (A+B)\cdot \cos (A-B)+\sin^2 C](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cquad%201-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A%2B2B%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A-2B%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%2B%5Csin%5E2%20C%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D1-%5Ccos%20%28A%2BB%29%5Ccdot%20%5Ccos%20%28A-B%29%2B%5Csin%5E2%20C)
Given: 1 - cos (90° - C) · cos (A - B) + sin² C
Cofunction: 1 - sin C · cos (A - B) + sin² C
Factor: 1 - sin C [cos (A - B) + sin C]
Given: 1 - sin C[cos (A - B) - sin (90° - (A + B))]
Cofunction: 1 - sin C[cos (A - B) - cos (A + B)]
Sum to Product: 1 - sin C [2 sin A · sin B]
= 1 - 2 sin A · sin B · sin C
LHS = RHS: 1 - 2 sin A · sin B · sin C = 1 - 2 sin A · sin B · sin C 
Answer:
slope = - 
Step-by-step explanation:
calculate the slope m using the slope formula
m = 
with (x₁, y₁ ) = (3, 2 ) and (x₂, y₂ ) = (- 3, 4 )
m =
=
= - 
<span>square root if 54 is 7.35</span>
Answer:
false
Step-by-step explanation: