Answer:
12,400
Step-by-step explanation:
so what you are going to first is 400 times 31 which is 12,400
Answer:
The coordinate of point M = (-6,7)
Explanation:
The Median of a triangle is a line segment from a vertex to the midpoint of the opposite side of a triangle.
Given:
has vertices T(3,6) , R(-3,10) and E(-9,4).
Here, line TM is a median of triangle TRE where M is the midpoint of RE.
The midpoint of M of the line segment from R(-3,10) to E(-9,4) is;
M = 
Therefore, the coordinate of point M is, (-6,7).
Answer:
<u><em>(-1,1)</em></u>
Step-by-step explanation:
We can solve this by either graphing and finding ther point the lines intersect, or mathematically, I'll do both.
<u>Graphing:</u>
<u>Mathematically:</u>
−2x + 4y = 6
y = 2x + 3
See the attached graph. The lines intersect at (-1,1)
--------------------
I'll rearrange the first equation (to make it easier for me):
−2x + 4y = 6
4y = 2x + 6
y = (1/2)x + 1.5
Now lets substitute the second equation into the first so that we can eliminate y:
y = 2x + 3
[(1/2)x + 1.5] = 2x + 3
- (3/2)x = (3/2)
x = -1
If x = -1:
y = 2(-1) + 3
y = 1
The solution is x = -1 and y = 1, or (-1,1)
=================
Both approaches give us (-1,1), the solution to the system of equations. It is the only point that satisfies both equations.