1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrezito [222]
3 years ago
6

A population of values has a normal distribution with μ = 155.4 and σ = 49.5 . You intend to draw a random sample of size n = 24

6 . Find the probability that a single randomly selected value is between 158.6 and 159.2. P(158.6 < X < 159.2) = .0048 Correct Find the probability that a sample of size n = 246 is randomly selected with a mean between 158.6 and 159.2. P(158.6 < M < 159.2) = .0410 Correct
Mathematics
2 answers:
xz_007 [3.2K]3 years ago
4 0

Answer:

(a) The probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.

(b) The probability that a sample mean is between 158.6 and 159.2 is 0.0411.

Step-by-step explanation:

Let the random variable <em>X</em> follow a Normal distribution with parameters <em>μ</em> = 155.4 and <em>σ</em> = 49.5.

(a)

Compute the probability that a single randomly selected value lies between 158.6 and 159.2 as follows:

P(158.6 < X

*Use a standard normal table.

Thus, the probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.

(b)

A sample of <em>n</em> = 246 is selected.

Compute the probability that a sample mean is between 158.6 and 159.2 as follows:

P(158.6 < \bar X

*Use a standard normal table.

Thus, the probability that a sample mean is between 158.6 and 159.2 is 0.0411.

Marizza181 [45]3 years ago
3 0

Answer:

(a) P(158.6 < X < 159.2) = 0.0048

(b) P(158.6 < M < 159.2) = 0.041

Step-by-step explanation:

We are given that a population of values has a normal distribution with μ = 155.4 and σ = 49.5.

(a) <em>Let X = a single randomly selected value</em>

So, X ~ N(\mu=155.4,\sigma^{2} = 49.5^{2})

The z-score probability distribution for single selected value is given by;

                Z = \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean = 155.4

            \sigma = standard deviation = 149.5

The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.

So, probability that a single randomly selected value is between 158.6 and 159.2 is given by =  P(158.6 < X < 159.2) = P(X < 159.2) - P(X \leq 158.6)

    P(X < 159.2) = P( \frac{X-\mu}{\sigma} < \frac{159.2-155.4}{49.5} ) = P(Z < 0.077) = 0.5307

    P(X \leq 158.6) = P( \frac{X-\mu}{\sigma} \leq \frac{158.6-155.4}{49.5} ) = P(Z \leq 0.065) = 0.5259                                    

<em>The above probabilities is calculated by looking at the value of x = 0.077 and x = 0.065 in the z table which has an area of 0.5307 and 0.5259 respectively.</em>

Therefore, P(158.6 < X < 159.2) = 0.5307 - 0.5259 = 0.0048

(b) Now we are given a sample size of 246.

<em>Let M = sample mean </em>

The z-score probability distribution for sample mean is given by;

                Z = \frac{ M -\mu}{{\frac{\sigma}{\sqrt{n} } }} }  ~ N(0,1)

where, \mu = population mean = 155.4

            \sigma = standard deviation = 149.5

            n = sample size = 246

The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.

So, probability that the mean is between 158.6 and 159.2 is given by =  P(158.6 < M < 159.2) = P(M < 159.2) - P(M \leq 158.6)

    P(M < 159.2) = P( \frac{ M -\mu}{{\frac{\sigma}{\sqrt{n} } }} } < \frac{ 159.2-155.4}{{\frac{49.5}{\sqrt{246} } }} } ) = P(Z < 1.20) = 0.885

    P(M \leq 158.6) = P( \frac{ M -\mu}{{\frac{\sigma}{\sqrt{n} } }} } \leq \frac{ 158.6-155.4}{{\frac{49.5}{\sqrt{246} } }} } ) = P(Z \leq 1.01) = 0.844                                      

<em>The above probabilities is calculated by looking at the value of x = 1.20 and x = 1.01 in the z table which has an area of 0.885 and 0.844 respectively.</em>

Therefore, P(158.6 < M < 159.2) = 0.885 - 0.844 = 0.041

You might be interested in
Find the exact length of the third side.<br> 7.<br> 3
Lelechka [254]

Answer:

10

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
A box of Georgia peaches has 3 bad and 12 good peaches. (a) If you make a peach cobbler of 12 peaches randomly selected from the
Eddi Din [679]

Answer:

a) 0.21% probability that there are no bad peaches in the peach cobbler.

b) 99.79% probability of having at least 1 bad peach in the peach cobbler

c) 7.91% probability of having exactly 2 bad peaches in the peach cobbler.

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

The order in which the peaches are chosen is not important. So the combinations formula is used to solve this question.

Combinations formula:

C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

(a) If you make a peach cobbler of 12 peaches randomly selected from the box, what is the probability that there are no bad peaches in the peach cobbler?

Desired outcomes:

12 good peaches, from a set of 12. So

D = C_{12,12} = \frac{12!}{12!(12 - 12)!} = 1

Total outcomes:

12 peaches, from a set of 15. So

T = C_{15,12} = \frac{15!}{12!(15 - 12)!} = 455

Probability:

p = \frac{D}{T} = \frac{1}{455} = 0.0021

0.21% probability that there are no bad peaches in the peach cobbler.

(b) What is the probability of having at least 1 bad peach in the peach cobbler?

Either there are no bad peaches, or these is at least 1. The sum of the probabilities of these events is 100%. So

p + 0.21 = 100

p = 99.79

99.79% probability of having at least 1 bad peach in the peach cobbler

(c) What is the probability of having exactly 2 bad peaches in the peach cob- bler?

Desired outcomes:

2 bad peaches, from a set of 3.

One good peach, from a set of 12.

D = C_{3,2}*C_{12,1} = \frac{3!}{2!(3-2)!}*\frac{12!}{1!(12 - 1)!} = 36

Total outcomes:

12 peaches, from a set of 15. So

T = C_{15,12} = \frac{15!}{12!(15 - 12)!} = 455

Probability:

p = \frac{D}{T} = \frac{36}{455} = 0.0791

7.91% probability of having exactly 2 bad peaches in the peach cobbler.

3 0
3 years ago
How do i use properties of exponents
STatiana [176]
You can use the properties of exponents in three ways: Products of Power and Power to Power


Explanation:

Product of a Power: When you multiply exponentials with the same base, you add their exponents

Power to a Power: When you have a power to a power, you multiply the exponents.
Quotient of Powers: When you divide exponentials with the same base, you subtract the exponents.
3 0
3 years ago
Help please &gt;3 thank youuu
11111nata11111 [884]

Answer:

C

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
A line contains the points (−26, −37)(−26, −37) and (−32, −61)(−32, −61) . What is the slope of the line in simplified form?
Rus_ich [418]
Slope = (y2 - y1)/(x2 - x1) = (-61 - (-37))/(-32 - (-26)) = (-61 + 37)/(-32 + 26) = -24/-6 = 4

Therefore, slope = 4
3 0
3 years ago
Other questions:
  • Beach travel rents dune buggies for 50$ for 4 hours or 75$ for 6 hours. What is the hourly rate?
    8·1 answer
  • On a field trip a 6th grade class traveled 19.95 kilometer by train, 7 kilometer by bus and 2.3 kilometer by car. How far did th
    12·1 answer
  • Side V W is parallel to Side Y Z in the map below. Triangle V X W. Side V W is 4 miles and side V X is 3 miles. Triangle X Z Y.
    15·2 answers
  • PLZZZZZZZ HELP MEEEEEE
    6·1 answer
  • This photo is the problem I have to solve for x help please
    13·2 answers
  • Willie invests $3,237 in a savings account with a fixed annual interest rate of 2%compounded 2 times per year. What will the acc
    10·1 answer
  • PLEASE HELP BRAINLIEST
    9·1 answer
  • Is anyone able to help :/ please please please
    5·1 answer
  • Geometry triangle help pls
    12·1 answer
  • 7.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!