1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrezito [222]
3 years ago
6

A population of values has a normal distribution with μ = 155.4 and σ = 49.5 . You intend to draw a random sample of size n = 24

6 . Find the probability that a single randomly selected value is between 158.6 and 159.2. P(158.6 < X < 159.2) = .0048 Correct Find the probability that a sample of size n = 246 is randomly selected with a mean between 158.6 and 159.2. P(158.6 < M < 159.2) = .0410 Correct
Mathematics
2 answers:
xz_007 [3.2K]3 years ago
4 0

Answer:

(a) The probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.

(b) The probability that a sample mean is between 158.6 and 159.2 is 0.0411.

Step-by-step explanation:

Let the random variable <em>X</em> follow a Normal distribution with parameters <em>μ</em> = 155.4 and <em>σ</em> = 49.5.

(a)

Compute the probability that a single randomly selected value lies between 158.6 and 159.2 as follows:

P(158.6 < X

*Use a standard normal table.

Thus, the probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.

(b)

A sample of <em>n</em> = 246 is selected.

Compute the probability that a sample mean is between 158.6 and 159.2 as follows:

P(158.6 < \bar X

*Use a standard normal table.

Thus, the probability that a sample mean is between 158.6 and 159.2 is 0.0411.

Marizza181 [45]3 years ago
3 0

Answer:

(a) P(158.6 < X < 159.2) = 0.0048

(b) P(158.6 < M < 159.2) = 0.041

Step-by-step explanation:

We are given that a population of values has a normal distribution with μ = 155.4 and σ = 49.5.

(a) <em>Let X = a single randomly selected value</em>

So, X ~ N(\mu=155.4,\sigma^{2} = 49.5^{2})

The z-score probability distribution for single selected value is given by;

                Z = \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean = 155.4

            \sigma = standard deviation = 149.5

The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.

So, probability that a single randomly selected value is between 158.6 and 159.2 is given by =  P(158.6 < X < 159.2) = P(X < 159.2) - P(X \leq 158.6)

    P(X < 159.2) = P( \frac{X-\mu}{\sigma} < \frac{159.2-155.4}{49.5} ) = P(Z < 0.077) = 0.5307

    P(X \leq 158.6) = P( \frac{X-\mu}{\sigma} \leq \frac{158.6-155.4}{49.5} ) = P(Z \leq 0.065) = 0.5259                                    

<em>The above probabilities is calculated by looking at the value of x = 0.077 and x = 0.065 in the z table which has an area of 0.5307 and 0.5259 respectively.</em>

Therefore, P(158.6 < X < 159.2) = 0.5307 - 0.5259 = 0.0048

(b) Now we are given a sample size of 246.

<em>Let M = sample mean </em>

The z-score probability distribution for sample mean is given by;

                Z = \frac{ M -\mu}{{\frac{\sigma}{\sqrt{n} } }} }  ~ N(0,1)

where, \mu = population mean = 155.4

            \sigma = standard deviation = 149.5

            n = sample size = 246

The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.

So, probability that the mean is between 158.6 and 159.2 is given by =  P(158.6 < M < 159.2) = P(M < 159.2) - P(M \leq 158.6)

    P(M < 159.2) = P( \frac{ M -\mu}{{\frac{\sigma}{\sqrt{n} } }} } < \frac{ 159.2-155.4}{{\frac{49.5}{\sqrt{246} } }} } ) = P(Z < 1.20) = 0.885

    P(M \leq 158.6) = P( \frac{ M -\mu}{{\frac{\sigma}{\sqrt{n} } }} } \leq \frac{ 158.6-155.4}{{\frac{49.5}{\sqrt{246} } }} } ) = P(Z \leq 1.01) = 0.844                                      

<em>The above probabilities is calculated by looking at the value of x = 1.20 and x = 1.01 in the z table which has an area of 0.885 and 0.844 respectively.</em>

Therefore, P(158.6 < M < 159.2) = 0.885 - 0.844 = 0.041

You might be interested in
There are 45 M&amp;Ms in a standard size bag. At 360 calories per bag,
Artyom0805 [142]

Answer:

about 8 calories per M&M

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
PLEASE HELP IF YOU CAN, ASAP :)
Luba_88 [7]

Answer:

I mean 6

Step-by-step explanation:

That is the answere to you question.

4 0
3 years ago
Read 2 more answers
Find the map ratio if 10 cm on the map is represented by 10 km
olga nikolaevna [1]
I think this is the answer :)

4 0
2 years ago
Read 2 more answers
Four less than the quotient of a number 1 and 5.
zhannawk [14.2K]

Answer:

Step-by-step explanation:

You should know that quotient is the result of division.

 

n/2

 

Four less than that would be subtracting.

 

(n/2) - 4 = 9

5 0
3 years ago
Read 2 more answers
What is the answe for it?
sineoko [7]

Answer:

it mean

Step-by-step explanation:

asap skekdkdke

i am joking

3 0
3 years ago
Read 2 more answers
Other questions:
  • There are 7 red 3 green 2 blue and 8 purple marbles in a bag if a marble is randomly chosen 250 times predict how many times it
    8·1 answer
  • Select the best answer for the question.
    8·2 answers
  • What is the range of the function y=3 Sqrt x+8
    13·2 answers
  • Multiply 5 yards 18 inches by 3? please show work
    13·1 answer
  • Find f(4) for the following function: *
    14·1 answer
  • a truck costs 20000 it depreciates 4000 per year write a linear model in the form vt=mt+b where x represents the current value o
    6·2 answers
  • If x = 3 cm and z = 5 cm, what is the length of y?
    5·1 answer
  • Allen is looking through his weekly local grocery store newspaper ads he notices that Costco is advertising a pack of 60 eggs fo
    12·2 answers
  • Write an equation in point slope form of equation of line<br> point (7,10) and has a slope of -2?
    11·1 answer
  • The blue dot is at what value on the number line? -10 -4
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!