Answer:
<em><u>I</u></em><em><u> </u></em><em><u>hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>you</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
answer:
Simplifying Y2 + -20X + -6y + -51 = 0
Reorder the terms: -51 + -20X + Y2 + -6y = 0
Solving -51 + -20X + Y2 + -6y = 0
Solving for variable 'X'.
Move all terms containing X to the left, all other terms to the right.
Add '51' to each side of the equation. -51 + -20X + Y2 + 51 + -6y = 0 + 51
Reorder the terms: -51 + 51 + -20X + Y2 + -6y = 0 + 51 Combine like terms: -51 + 51 = 0 0 + -20X + Y2 + -6y = 0 + 51 -20X + Y2 + -6y = 0 + 51
Combine like terms: 0 + 51 = 51 -20X + Y2 + -6y = 51
Add '-1Y2' to each side of the equation. -20X + Y2 + -1Y2 + -6y = 51 + -1Y2
Combine like terms: Y2 + -1Y2 = 0 -20X + 0 + -6y = 51 + -1Y2 -20X + -6y = 51 + -1Y2 Add '6y' to each side of the equation. -20X + -6y + 6y = 51 + -1Y2 + 6y Combine like terms: -6y + 6y = 0 -20X + 0 = 51 + -1Y2 + 6y -20X = 51 + -1Y2 + 6y Divide each side by '-20'. X = -2.55 + 0.05Y2 + -0.3y Simplifying X = -2.55 + 0.05Y2 + -0.3y
Step-by-step explanation:
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
We need to 'standardise' the value of X = 14.4 by first calculating the z-score then look up on the z-table for the p-value (which is the probability)
The formula for z-score:
z = (X-μ) ÷ σ
Where
X = 14.4
μ = the average mean = 18
σ = the standard deviation = 1.2
Substitute these value into the formula
z-score = (14.4 - 18) ÷ 1..2 = -3
We are looking to find P(Z < -3)
The table attached conveniently gives us the value of P(Z < -3) but if you only have the table that read p-value to the left of positive z, then the trick is to do:
1 - P(Z<3)
From the table
P(Z < -3) = 0.0013
The probability of the runners have times less than 14.4 secs is 0.0013 = 0.13%
Answer:
1,728
Step-by-step explanation: