Answer:
Therefore the angle of intersection is 
Step-by-step explanation:
Angle at the intersection point of two carve is the angle of the tangents at that point.
Given,

and 
To find the tangent of a carve , we have to differentiate the carve.

The tangent at (0,0,0) is [ since the intersection point is (0,0,0)]
[ putting t= 0]

Again,

The tangent at (0,0,0) is
[ putting t= 0]

If θ is angle between tangent, then






Therefore the angle of intersection is
.
Answer:
41
Step-by-step explanation:
First one:
3x+5<23
3x<18 (subtract 5 from both sides)
x<6
So A: less than 6 cars
Second one:
3(x-4)+5(2x+1)
3x-12+10x+5 (distribute)
So the answer is C
Hope this helps
Answer:
Perimeter = 10x + 8 units.
Area = 6x^2 + 13x - 5 units^2.
Step-by-step explanation:
The perimeter is 2*length + 2*breadth
= 2(2x + 5) + 2(3x - 1)
= 4x + 10 + 6x - 2
= 10x + 8 units.
The area = length * breadth
= (2x + 5)(3x - 1)
= 6x^2 - 2x + 15x - 5
= 6x^2 + 13x - 5 units^2.
<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x into f(x) = - ln (x - 4) by shifting the parent graph 4 units to the right and reflecting over the x-axis
(???, 0): 0 = - ln (x - 4)

0 = ln (x - 4)

1 = x - 4
<u> +4 </u> <u> +4 </u>
5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)

1 = ln (x - 4)

e = x - 4
<u> +4 </u> <u> +4 </u>
e + 4 = x
6.72 = x
(6.72, 1)
Domain: x - 4 > 0
<u> +4 </u> <u>+4 </u>
x > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ into f(x) = - 3ˣ⁺⁵ by shifting the parent graph 5 units to the left and reflecting over the x-axis
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0. the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
f(x) = - 3ˣ⁺⁵
= - 3⁰⁺⁵
= - 3⁵
= -243
Horizontal Asymptote: y = 0 <em>(explanation above)</em>