Answer:
Therefore the angle of intersection is 
Step-by-step explanation:
Angle at the intersection point of two carve is the angle of the tangents at that point.
Given,

and 
To find the tangent of a carve , we have to differentiate the carve.

The tangent at (0,0,0) is     [ since the intersection point is (0,0,0)]
 [ putting t= 0]
      [ putting t= 0]

Again,

The tangent at (0,0,0) is     
 [ putting t= 0]
        [ putting t= 0]

If θ is angle between tangent, then

 




Therefore the angle of intersection is  .
.
 
        
             
        
        
        
Answer:
41
Step-by-step explanation:
 
        
                    
             
        
        
        
First one:
3x+5<23
3x<18 (subtract 5 from both sides)
x<6
So A: less than 6 cars
Second one:
3(x-4)+5(2x+1)
3x-12+10x+5 (distribute)
So the answer is C
Hope this helps
        
             
        
        
        
Answer:
Perimeter =  10x + 8 units.
Area = 6x^2 + 13x - 5 units^2.
Step-by-step explanation:
The perimeter  is 2*length + 2*breadth
= 2(2x + 5) + 2(3x - 1)
= 4x + 10 + 6x - 2
= 10x + 8 units.
The area = length * breadth
= (2x + 5)(3x - 1)
= 6x^2 - 2x + 15x - 5
= 6x^2 + 13x - 5 units^2.
 
        
             
        
        
        
<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x        into f(x) = - ln (x - 4)  by shifting the parent graph 4 units to the right and reflecting over the x-axis 
(???, 0): 0 = - ln (x - 4)
             
             0 = ln (x - 4)
             
              1 = x - 4
           <u> +4 </u>  <u>    +4 </u>
              5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)
             
             1 = ln (x - 4)
             
              e = x - 4
           <u> +4 </u>   <u>    +4 </u>
          e + 4 = x
           6.72 = x
(6.72, 1)
Domain: x - 4 > 0
                 <u>  +4 </u>  <u>+4  </u>
                x       > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ        into f(x) = - 3ˣ⁺⁵  by shifting the parent graph 5 units to the left and reflecting over the x-axis 
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0.  the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
 f(x) = - 3ˣ⁺⁵
       = - 3⁰⁺⁵
       = - 3⁵
       = -243
Horizontal Asymptote: y = 0  <em>(explanation above)</em>