A distribution of probabilities for random outcomes of bivariate or dichotomous random variables is called (A) binomial probability distribution.
<h3>
What is a binomial probability distribution?</h3>
- The binomial distribution with parameters n and p in probability theory and statistics is the discrete probability distribution of the number of successes in a succession of n separate experiments, each asking a yes-no question and each with its own Boolean-valued outcome: success or failure.
- The binomial distribution is widely used to describe the number of successes in a sample of size n selected from a population of size N with replacement.
- If the sampling is done without replacement, the draws are not independent, and the resulting distribution is hypergeometric rather than binomial.
- Binomial probability distribution refers to a distribution of probabilities for random outcomes of bivariate or dichotomous random variables.
As the description itself says, binomial probability distribution refers to a distribution of probabilities for random outcomes of bivariate or dichotomous random variables.
Therefore, a distribution of probabilities for random outcomes of bivariate or dichotomous random variables is called (A) binomial probability distribution.
Know more about binomial probability distribution here:
brainly.com/question/9325204
#SPJ4
Complete question:
A distribution of probabilities for random outcomes of bivariate or dichotomous random variables is called a ______.
Group of answer choices
(A) binomial probability distribution
(B) distribution of expected values
(C) random variable distribution
(D) mathematical expectation
Answer:
<u>Alejandro went to 8 matinee shows and 4 evening shows.</u>
<u>Our system of equations:</u>
<u>x + y = 12</u>
<u>7x + 12y = 104</u>
Correct statement and question:
Alejandro loves to go to the movies. He goes both at night and during the day. The cost of a matinee is 7 dollars. The cost of an evening show is 12 dollars.
Alejandro went to see a total of 12 movies and spent $ 104. How many of each type of movie did he attend? Write a system of equations.
Source:
Previous question that can be found at brainly
Step-by-step explanation:
Step 1:
Let x to represent the number of matinee shows Alejandro went to.
Let y to represent the number of evening shows Alejandro went to.
Now, let's write our system of equations:
x + y = 12
7x + 12y = 104
*********************
x = 12 - y
*********************
7 (12 - y) + 12y = 104
84 - 7y + 12y = 104
5y = 104 - 84
5y = 20
y = 20/5
<u>y = 4 ⇒ x = 12 - 4 = 8</u>
<u>Alejandro went to 8 matinee shows and 4 evening shows.</u>
Answer:
Step-by-step explanation:
I'm goig to assume that the formula we need here is the following:

where A(t) is the amount in the account after the compounding is done, n is the number of times per year the compounding occurs, r is the rate in decimal form, and t is the time in years. Filling in accordingly,
and simplifying a bit,
and simplifying a bit more,
A(t) = 90000(1.343916379) so
the amount in the account after 5 years is
A(t) = 120,952.47
Answer:
I believe it is C
Step-by-step explanation:
because in order to find out how much he has left to read you have to find out how much he has read.