The sum of cubes is given as:
a³ + b³ = (a + b)(a² - ab + b²)
Example for the sum of cubes:
64x³+y³ ⇒ This is the sum of cubes because each term; 64, x³, and y³ are cube numbers
By writing each term as an expression of cube numbers, we have:
(4x)³ + (y)³ ⇒ 64 is 4³
Use the factorization of the sum of cubes, we have:
(4x + y) ( (4x)²- 4xy + y²)
(4x + y) (16x² - 4xy + y²)
--------------------------------------------------------------------------------------------------------------
The difference of cubes can be factorized as:
(x³ - y³) = (x - y)(x² + xy + y²)
Example
(125x³ - 8y³) = (5x - 2y) ((5x)² + (5x)(2y) + (2y)²)
= (5x - 2y) (25x² + 10xy + 4y²)
Answer:
D 144 in hope this helps you on your test
18 - 7x = -20.52.5 = 7xx = 5/14 (c)
the answer is 75 minutes/1h 15m
15 pages × 350 words = 5250 words
5250 ÷ 70 = 75 minutes (1h 15m)
hope this helps!!