![\boxed{pd\sqrt[4]{48p^3d}}](https://tex.z-dn.net/?f=%5Cboxed%7Bpd%5Csqrt%5B4%5D%7B48p%5E3d%7D%7D)
<h2>
Explanation:</h2>
Here we have the following expression:
![\sqrt[4]{48p^7d^5}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B48p%5E7d%5E5%7D)
So we need to simplify it:
![\sqrt[4]{48p^7d^5} \\ \\ \\ We \ can \ write: \\ \\ p^7=p^4\cdot p^3 \\ \\ d^5=d^4\cdot d \\ \\ \\ So: \\ \\ \sqrt[4]{48p^4\cdot p^3\cdot d^4\cdot d} \\ \\ \\ By \ property: \\ \\ \sqrt[n]{x^n}=x \\ \\ \\ Finally: \\ \\ \boxed{pd\sqrt[4]{48p^3d}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B48p%5E7d%5E5%7D%20%5C%5C%20%5C%5C%20%5C%5C%20We%20%5C%20can%20%5C%20write%3A%20%5C%5C%20%5C%5C%20p%5E7%3Dp%5E4%5Ccdot%20p%5E3%20%5C%5C%20%5C%5C%20d%5E5%3Dd%5E4%5Ccdot%20d%20%5C%5C%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%20%5Csqrt%5B4%5D%7B48p%5E4%5Ccdot%20p%5E3%5Ccdot%20d%5E4%5Ccdot%20d%7D%20%5C%5C%20%5C%5C%20%5C%5C%20By%20%5C%20property%3A%20%5C%5C%20%5C%5C%20%5Csqrt%5Bn%5D%7Bx%5En%7D%3Dx%20%5C%5C%20%5C%5C%20%5C%5C%20Finally%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7Bpd%5Csqrt%5B4%5D%7B48p%5E3d%7D%7D)
<h2>Learn more:</h2>
Mathematical expressions: brainly.com/question/14200575#
#LearnWithBrainly
Solve:
"<span>twice the number minus three times the reciprocal of the number is equal to 1."
3(1)
Let the number be n. Then 2n - ------- = 1
n
Mult all 3 terms by n to elim. the fractions:
2n^2 - 3 = n. Rearranging this, we get 2n^2 - n - 3 = 0.
We need to find the roots (zeros or solutions) of this quadratic equation.
Here a=2, b= -1 and c= -3. Let's find the discriminant b^2-4ac first:
disc. = (-1)^2 - 4(2)(-3) = 1 + 24 = 25.
That's good, because 25 is a perfect square.
-(-1) plus or minus 5 1 plus or minus 5
Then x = ------------------------------ = --------------------------
2(2) 4
x could be 6/4 = 3/2, or -5/4.
You must check both answers in the original equation. If the equation is true for one or the other or for both, then you have found one or more solutions.</span>
press ask for help i think it my help im also stumped on that
Answer:
The answer is c
Step-by-step explanation:
C.88cm