Answer: Option B) phosphate; hydroxyl; 3'
We identify nucleic acid strand orientation on the basis of important chemical functional groups. These are the phosphate group attached to the 5' carbon atom of the sugar portion of a nucleotide and the hydroxyl group attached to the 3'
carbon atom
Explanation:
For both RNA and DNA, chemical groups such as phosphate (PO3-) attaches to the 5' carbon of the pentose sugar (deoxyribose in DNA, ribose in RNA).
While hydroxyl group (OH) attaches to the 3' carbon atom of the pentose sugar.
Thus, a nucleic acid structure structure reveals a several repeating units of nucleotides where nitrogenous base links to a pentose sugar, who in turns is linked to phosphate group
Energy is released from ATP by the breaking of the phosphate bond. A<span>denosine triphosphate, or ATP, consists of a sugar called ribose, the molecule adenine and three phosphate groups. During the hydrolysis of ATP, the last phosphate group is transferred to another molecule, thus breaking the phosphate bond. This reaction causes energy to be released to power other activities within the cell.</span>
Answer:
an experiment
Explanation: Any experiment you do to benefit the world in the name of science
Any photos below 7 is known as acidic, the lower the pH the more acidic the solution I believe.
The answer would be no. T-Tubules or Transverse tubules are
additions of the sarcolemma that infiltrate into the center of cardiac and
skeletal muscle cells. There would be no functional contraction since it
would not be capable to communicate or interconnect with the other cells.