Answer:
A: 779 cm²
B: 1837 cm²
Step-by-step explanation:
For both problems, use the formula for surface area of a cylinder:
SA = 2πr² + 2πrh
2πr² is the two bases.
2πrh is the curved surface.
<u>PROBLEM A</u>
"the cylinder is 60 cm long" is h = 60.
If given diameter, you can find "r" by dividing it by 2. d = 2r
Given d = 4, then r = 2.
SA = 2πr² + 2πrh
SA = 2π2² + 2π2(60)
SA = 8π + 240π Add
SA = 248π Exact answer
SA ≈ 779.114978 Answer on calculator
SA ≈ 779 Rounded answer
Remember to include the units.
The surface area is about 779 cm².
<u>PROBLEM B</u>
"80 cm long" h = 80.
"circumference of 22 cm". C = 22. Remember C = 2πr. Find "r".
C = 2πr
22 = 2πr
11 = πr
r ≈ 11/π
SA = 2πr² + 2πrh
SA = 2π(11/π)² + 22(80) Substitute 2πr with the circumference.
SA ≈ 1837.030992 Answer on calculator
SA ≈ 1837 Rounded answer
Remember to include the units.
The surface area is about 1837 cm².
Answer:
its C
Step-by-step explanation:
Answer:
x + 8
Step-by-step explanation:
sum=+
and=+
thus, the sum off a number and 8 =x + 8
x+8
Answer:
4 : 5
Step-by-step explanation:
8 : 10
4 : 5
hope this was helpful : )
Answer:

Step-by-step explanation:
Let
represent the real numbers.
For the first part, all real numbers less than or equal to 9 in algebra is
.
For the second part, all real numbers greater than or equal to 7 in algebra is
.
To combine both inequalities, it would become
.
Hope this helped! If not, please let me know! <3