Answer: The membership will last for 12 months.
Step-by-step explanation:
Let x represent the number of months that the membership would last.
Cleo wants to join a gym. There is an initiation fee of $24.99, and each month of membership costs $12.50. This means that the total cost of using the gym for x months would be expressed as
12.5x + 24.99
If Cleo pays $174.99, it means that
12.5x + 24.99 = 174.99
12.5x = 174.99 - 24.99
12.5x = 150
x = 150/12.5
x = 12
So I'm assuming that you're taking Calculus.
The first thing you want to do is take the integral of f(x)...
Use the power rule to get:
4X^2-13X+3.
Now solve for X when f(x)=0. This is because when the slope is 0, it is either a minimum or a maximum(I'm assuming you know this)
Now you get X=0.25 and X=3. Since we are working in the interval of (1,4), we can ignore 0.25
Thus our potential X values for max and min are X=1,X=4,X=3(You don't want to forget the ends of the bounds!)
Plugging these value in for f(x), we get
f(1)=2.833
f(3)=-8.5
f(4)=1.667
Thus X=1 is the max and X=3 is the min.
So max:(1,2.833)
min:(3,-8.5)
Hope this helps!
I think c and b are correct answers
Answer:
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
Step-by-step explanation:
Let A represent snickers, B represent Twix and C represent Reese's Peanut Butter Cups.
Given;
N(A) = 150
N(B) = 204
N(C) = 206
N(A∩B) = 75
N(A∩C) = 100
N(B∩C) = 98
N(A∩B∩C) = 38
N(Total) = 500
How many students like Reese's Peanut Butter Cups or Snickers, but not Twix;
N(AUC∩B')
This can be derived by first finding;
N(AUC) = N(A) + N(C) - N(A∩C)
N(AUC) = 150+206-100 = 256
Also,
N(A∩B U B∩C) = N(A∩B) + N(B∩C) - N(A∩B∩C) = 75 + 98 - 38 = 135
N(AUC∩B') = N(AUC) - N(A∩B U B∩C) = 256-135 = 121
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
See attached venn diagram for clarity.
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is the shaded part