First step of the initiation stage is the binding of a specific initiator methionyl tRNA and the mRNA to the small ribosomal subunit.
Answer/Explanation: On Mercury temperatures can get as hot as 430 degrees Celsius during the day and as cold as -180 degrees Celsius at night.
Mercury is the planet in our solar system that sits closest to the sun. The distance between Mercury and the sun ranges from 46 million kilometers to 69.8 million kilometers. The earth sits at a comfy 150 million kilometers. This is one reason why it gets so hot on Mercury during the day.
The other reason is that Mercury has a very thin and unstable atmosphere. At a size about a third of the earth and with a mass (what we on earth see as ‘weight’) that is 0.05 times as much as the earth, Mercury just doesn’t have the gravity to keep gases trapped around it, creating an atmosphere. Due to the high temperature, solar winds, and the low gravity (about a third of earth’s gravity), gases keep escaping the planet, quite literally just blowing away.
Atmospheres can trap heat, that’s why it can still be nice and warm at night here on earth.
Mercury’s atmosphere is too thin, unstable and close to the sun to make any notable difference in the temperature.
Space is cold. Space is very cold. So cold in fact, that it can almost reach absolute zero, the point where molecules stop moving (and they always move). In space, the coldest temperature you can get is 2.7 Kelvin, about -270 degrees Celsius.
Sunlight reflected from other planets and moons, gases that move through space, the very thin atmosphere and the surface of Mercury itself are the main reasons that temperatures on Mercury don’t get lower than about -180 °C at night.
The answer is omnivore, because it eats plants and animals
Answer:
The greenhouse effect:
The process in which gases in the atmosphere trap heat from the sun and warm the Earth. is the natural warming of the Earth’s atmosphere Solar radiation enters the atmosphere mainly as light and some of that radiation is absorbed by the Earth’s surface then changed to heat that is reradiated into the atmosphere where it is absorbed by greenhouse gases then reradiated back to Earth again
The mixture would be :
1. Homogeneous; dissolving followed by filtration and distillation
salt dissolve in water and will be the filtrate and chalk will be the residue in the filter paper
hope this helps