Find the critical points of f(y):Compute the critical points of -5 y^2
To find all critical points, first compute f'(y):( d)/( dy)(-5 y^2) = -10 y:f'(y) = -10 y
Solving -10 y = 0 yields y = 0:y = 0
f'(y) exists everywhere:-10 y exists everywhere
The only critical point of -5 y^2 is at y = 0:y = 0
The domain of -5 y^2 is R:The endpoints of R are y = -∞ and ∞
Evaluate -5 y^2 at y = -∞, 0 and ∞:The open endpoints of the domain are marked in grayy | f(y)-∞ | -∞0 | 0∞ | -∞
The largest value corresponds to a global maximum, and the smallest value corresponds to a global minimum:The open endpoints of the domain are marked in grayy | f(y) | extrema type-∞ | -∞ | global min0 | 0 | global max∞ | -∞ | global min
Remove the points y = -∞ and ∞ from the tableThese cannot be global extrema, as the value of f(y) here is never achieved:y | f(y) | extrema type0 | 0 | global max
f(y) = -5 y^2 has one global maximum:Answer: f(y) has a global maximum at y = 0
Answer:
28425.13
Step-by-step explanation:
Plug in the radius and height, and then multiply by 87.
Formula : A=2πrh+2πr2
Answer: -15 divided by 0.3 is the same as -15/3/10 but to solve we can do -15 times 10/3 witch is -150/3=-50
Step-by-step explanation:
Set up the equation ... 60 + 40X = total charges... where X is the number of hours (8.5)
60 + 40(8.5) = ?
60 + 340 = ?
400 = total charges
Answer:
16
Step-by-step explanation:
Inverse variation is of the form
xy = k where k is a constant
x=4 and y = 32
4*32 = k
128 = k
xy = 128
Let x = 8
8y = 128
Divide each side by 8
8y/8 = 128/8
y =16