120 is the answer im pretty sure
Answer:
3.84% probability that it has a low birth weight
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

If we randomly select a baby, what is the probability that it has a low birth weight?
This is the pvalue of Z when X = 2500. So



has a pvalue of 0.0384
3.84% probability that it has a low birth weight
Answer:
![\frac{\sqrt[4]{3x^2} }{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%20%7D%7B2y%7D)
Step-by-step explanation:
We can simplify the expression under the root first.
Remember to use 
Thus, we have:
![\sqrt[4]{\frac{24x^{6}y}{128x^{4}y^{5}}} \\=\sqrt[4]{\frac{3x^{2}}{16y^{4}}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B24x%5E%7B6%7Dy%7D%7B128x%5E%7B4%7Dy%5E%7B5%7D%7D%7D%20%5C%5C%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B3x%5E%7B2%7D%7D%7B16y%5E%7B4%7D%7D%7D)
We know 4th root can be written as "to the power 1/4th". Then we can use the property 
<em>So we have:</em>
<em>
</em>
<em />
<em>Option D is right.</em>