BC is 10 units and AC is
units
Step-by-step explanation:
Let us revise the sine rule
In ΔABC:

- AB is opposite to ∠C
- BC is opposite to ∠A
- AC is opposite to ∠B
Let us use this rule to solve the problem
In ΔABC:
∵ m∠A = 45°
∵ m∠C = 30°
- The sum of measures of the interior angles of a triangle is 180°
∵ m∠A + m∠B + m∠C = 180
∴ 45 + m∠B + 30 = 180
- Add the like terms
∴ m∠B + 75 = 180
- Subtract 75 from both sides
∴ m∠B = 105°
∵ 
∵ AB = 
- Substitute AB and the 3 angles in the rule above
∴ 
- By using cross multiplication
∴ (BC) × sin(30) =
× sin(45)
∵ sin(30) = 0.5 and sin(45) = 
∴ 0.5 (BC) = 5
- Divide both sides by 0.5
∴ BC = 10 units
∵ 
- Substitute AB and the 3 angles in the rule above
∴ 
- By using cross multiplication
∴ (AC) × sin(30) =
× sin(105)
∵ sin(105) = 
∴ 0.5 (AC) = 
- Divide both sides by 0.5
∴ AC =
units
BC is 10 units and AC is
units
Learn more:
You can learn more about the sine rule in brainly.com/question/12985572
#LearnwithBrainly
<span>Let n = the number of nickles
Let q = the number of quarters
Then for your problem we have
(1) n + q = 43 and
(2) 5*n + 25*q = 100*6.95 (always work in cents to avoid decimal numbers) or
(3) 5*n + 25*q = 695
Now substitute n of (1) into (3) and get
(4) 5*(43 - q) + 25*q = 695 or
(5) 215 - 5*q + 25*q = 695 or
(6) 20*q = 695 - 215 or
(7) 20*q = 480 or
(8) q = 24
Then using (1) we get
(9) n + 24 = 43 or
(10) n = 19
Let's check these values.
Is (.05*19 + .25*24 = 6.95)?
Is (.95 + 6.00 = 6.95)?
Is (6.95 = 6.95)? Yes
Answer: Kevin and Randy have 19 nickles and 24 quarters in the jar.</span>
Answer:
Step-by-step explained
Sleep,eat well,drink plenty of water.Attened any revision plans.
Answer:D
Step-by-step explanation: trust me ima sophomore use this for help y=1/2x+4 then x value change it to the number in the x section then if the y appears just like in the box the y section it’s correct