

notice... the dog's pen perimeter, does not include the side that's bordering the garden's, since that side will use the heavy duty fence, instead of the light one
so, the sum of both of those costs, will be the C(x)

so, just take the derivative of it, and set it to 0 to find the extremas, and do a first-derivative test for any minimum
Five voted for green or yellow and 10 voted for red or blue
Wow that's a hard one. Ummm....
The answer the 3,
First you have to apply the exponent rule which is 1 - 3• 1/g
Then you multiply the fractions - 1•3/g
Then multiply the numbers 1 and 3, which is 3, so there you have it 3/g, or 3, they’re the same thing.
The correct answer is: [B]: "40 yd² " .
_____________________________________________________
First, find the area of the triangle:
The formula of the area of a triangle, "A":
A = (1/2) * b * h ;
in which: " A = area (in units 'squared') ; in our case, " yd² " ;
" b = base length" = 6 yd.
" h = perpendicular height" = "(4 yd + 4 yd)" = 8 yd.
___________________________________________________
→ A = (1/2) * b * h = (1/2) * (6 yd) * (8 yd) = (1/2) * (6) * (8) * (yd²) ;
= " 24 yd² " .
___________________________________________________
Now, find the area, "A", of the square:
The formula for the area, "A" of a square:
A = s² ;
in which: "A = area (in "units squared") ; in our case, " yd² " ;
"s = side length (since a 'square' has all FOUR (4) equal side lengths);
A = s² = (4 yd)² = 4² * yd² = "16 yd² "
_________________________________________________
Now, we add the areas of BOTH the triangle AND the square:
_________________________________________________
→ " 24 yd² + 16 yd² " ;
to get: " 40 yd² " ; which is: Answer choice: [B]: " 40 yd² " .
_________________________________________________