Answer:
6 pounds 3 ounces
Step-by-step explanation:
16 oz in a lb. 16 *6 = 96. Leaving 3 oz left.
Answer: fourth option
Explanation:1) the pair x = 3 f(x) = 0, leads you to probe this:
f(3) = 0 = A [4 ^ (3 - 1) ] + C = 0
=> A [4^2] = - C
A[16] = - C
if A = 1/4
16 / 4 = 4 => C = - 4
That leads you to the function f(x) = [1/4] 4 ^( x - 1) - 4
2) Now you verify the images for that function for all the x-values of the table:
x = 2 => f(2) + [1/4] 4 ^ (2 - 1) - 4 = [1/4] 4 - 4 = 4 / 4 - 4 = 1 - 4 = - 3 => check
x = 3 => f(3) = [1/4] 4^ (3 - 1) - 4 = [1/4] 4^2 - 4 = 16 / 4 - 4 = 4 - 4 = 0 => check
x = 4 -> f(4) = [1/4] 4^ (4-1) - 4 = [1/4] 4^(3) - 4 = (4^3) / 4 - 4 = 4^2 - 4 = 16 - 4 = 12 => check.
Therefore, you have proved that the answer is the fourth option.
Answer:
I will need 26.4 pounds of the expensive nuts and 1.6 pounds of the cheap nuts.
Step-by-step explanation:
Since I have one type of nut that sells for $ 4.50 / lb and another type of nut that sells for $ 8.00 / lb, and I would like to have 28 lbs of a nut mixture that sells for $ 7.80 / lb, to determine how much of each nut will I need to obtain the desired mixture, the following calculation must be performed:
8 x 0.95 + 4.5 x 0.05 = 7.825
8 x 0.94 + 4.5 x 0.06 = 7.79
0.94 x 28 = 26.32
26.4 x 8 + 1.6 x 4.5 = 218.4
218.4 / 28 = 7.8
Thus, I will need 26.4 pounds of the expensive nuts and 1.6 pounds of the cheap nuts.
Answer:
I'm not too good at this but I got 10/4??
Step-by-step explanation:
please let me know if I'm right!