The probability that the next toss will be heads is 1/8.
<h3>What is probability?</h3>
The likelihood of an event occurring is described by probability. We frequently have to make forecasts about the future in real life. We may or may not be aware of the outcome of an event. When this happens, we declare that there is a chance the event will take place.
Using the probability formula, one can determine the likelihood of an event by dividing the favorable number of possibilities by the total number of options. Since the favorable number of outcomes can never be greater than the entire number of outcomes, the probability of an event happening can range from 0 to 1.
Probability of getting two tails and next heads in three tosses is,
=1/2*1/2*1/2
=1/8
Learn more about probability here:
brainly.com/question/24756209
#SPJ1
Distribute
4x+4(less than) -6
Subtract 4 on both side
4x(less than) -10
divide 4 both sides
x(less than)-2.5
(Final answer is bold) Good luck
Answer is 2x^+3x-3 with reminder 4
Answer:

Step-by-step explanation:
Given the function
, to write the form of its partial fraction on decomposition, we will separate the two functions separated by an addition sign. The numerator of each function will be constants A and b and the denominator will be the individual factors of each function at the denominator. The partial fraction of the rational function is as shown below.

<em>Since we are not to solve for the constants, hence the partial fraction is </em>
The value of f[ -4 ] and g°f[-2] are
and 13 respectively.
<h3>What is the value of f[-4] and g°f[-2]?</h3>
Given the function;


- f[ -4 ] = ?
- g°f[ -2 ] = ?
For f[ -4 ], we substitute -4 for every variable x in the function.

For g°f[-2]
g°f[-2] is expressed as g(f(-2))
![g(\frac{3x-2}{x+1}) = (\frac{3x-2}{x+1}) + 5\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2}{x+1} + \frac{5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2+5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{8x+3}{x+1}\\\\We\ substitute \ in \ [-2] \\\\g(\frac{3x-2}{x+1}) = \frac{8(-2)+3}{(-2)+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-16+3}{-2+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-13}{-1}\\\\g(\frac{3x-2}{x+1}) = 13](https://tex.z-dn.net/?f=g%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%2B%205%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%20%2B%20%5Cfrac%7B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%2B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8x%2B3%7D%7Bx%2B1%7D%5C%5C%5C%5CWe%5C%20substitute%20%5C%20in%20%5C%20%5B-2%5D%20%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8%28-2%29%2B3%7D%7B%28-2%29%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-16%2B3%7D%7B-2%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-13%7D%7B-1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%2013)
Therefore, the value of f[ -4 ] and g°f[-2] are
and 13 respectively.
Learn more about composite functions here: brainly.com/question/20379727
#SPJ1