Answer:
Explanation:
net force on the skier = mg sin 39 - μ mg cos39
mg ( sin39 - μ cos39 )
= 73 x 9.8 ( .629 - .116)
= 367 N
impulse = net force x time = change in momentum .
= 367 x 5 = 1835 kg m /s
velocity of the skier after 5 s = 1835 / 73
= 25.13 m /s
b )
net force becomes zero
mg ( sin39 - μ cos39 ) = 0
μ = tan39
= .81
c )
net force becomes zero , so he will continue to go ahead with constant speed of 25.13 m /s
so he will have speed of 25.13 m /s after 5 s .
Answer:
L = 0.99 m = 99 cm
Explanation:
The period is the reciprocal of the frequency.
T = 1/0.5 = 2.0 s
T = 2π√(L/g)
L = g(T/2π)²
L = 9.8(2.0/2π)² = 0.99 m
If the system accelerates upward, it will cause the apparent gravity to increase. This will require a longer pendulum to keep the same period, or shorten the period if the length remains the same. This shows up in the equation where the product of gravity and the square of the period must remain constant for the length to remain constant.
Answer:
Decrease
Explanation:
If you were on the Moon, which has significantly less mass than the Earth, your weight would: decrease
The point that seemed to be giving me a complicated time was being able to distinguish the difference and meaning of weight and mass and being able to apply that to a problem. I kept mixing up the definitions. For example in homework 3.1, one question asked:
If you were on the moon, which has significantly less mass than the earth, your mass would:
a. increase
b. decrease
c. stay the same
d. become zero
The definition of mass is the amount of matter in an object. The definition of weight is the amount or unit of force. For me, I just had to remember that when it asked about weight, it wasn’t referring how heavy an object is. After I was able to recognize that when it came to weight, questions became easier.
The final and correct answer was decreasing. The answer is because the Moon’s mass is less. This means the gravitational force is less on your body, therefore, your mass is going to be lighter
A surface wave is a wave in which particles of the medium undergo a circular motion.
The period of the wave is the reciprocal of its frequency.
1 / (5 per second) = 0.2 second .
The wavelength is irrelevant to the period. But since you
gave it to us, we can also calculate the speed of the wave.
Wave speed = (frequency) x (wavelength)
= (5 per second) x (1cm) = 5 cm per second