Answer:
The speed of the water is 14.68 m/s.
Explanation:
Given that,
Time = 30 minutes
Distance = 11.0 m
Pressure = 101.3 kPa
Density of water = 1000 kg/m³
We need to calculate the speed of the water
Using equation of motion

Where, u = speed of water
g = acceleration due to gravity
h = height
Put the value into the formula



Hence, The speed of the water is 14.68 m/s.
Answer:
Explanation:
a. The equation of Lorentz transformations is given by:
x = γ(x' + ut')
x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.
x' = 0
t' = 5.00 s
u =0.800 c,
c is the speed of light = 3×10⁸ m/s
Then,
γ = 1 / √ (1 - (u/c)²)
γ = 1 / √ (1 - (0.8c/c)²)
γ = 1 / √ (1 - (0.8)²)
γ = 1 / √ (1 - 0.64)
γ = 1 / √0.36
γ = 1 / 0.6
γ = 1.67
Therefore, x = γ(x' + ut')
x = 1.67(0 + 0.8c×5)
x = 1.67 × (0+4c)
x = 1.67 × 4c
x = 1.67 × 4 × 3×10⁸
x = 2.004 × 10^9 m
x ≈ 2 × 10^9 m
Now, to find t we apply the same analysis:
but as x'=0 we just have:
t = γ(t' + ux'/c²)
t = γ•t'
t = 1.67 × 5
t = 8.35 seconds
b. Mavis reads 5 s on her watch which is the proper time.
Stanley measured the events at a time interval longer than ∆to by γ,
such that
∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)
c. According to Stanley,
dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m
which is the same as in part (a)
Hope this helps :)
When describing linear motion, you need only one graph representing each of the three terms, while projectile motion requires a graph of the x and y axes. Graphs of simple harmonic motion are sine curves. Circular motion is different from other forms of motion because the speed of the object is constant.
Answer:
The final velocity of the vehicle is 10.39 m/s.
Explanation:
Given;
acceleration of the vehicle, a = 2.7 m/s²
distance moved by the vehicle, d = 20 m
The final velocity of the vehicle is calculated using the following kinematic equation;
v² = u² + 2ah
v² = 0 + 2 x 2.7 x 20
v² = 108
v = √108
v = 10.39 m/s
Therefore, the final velocity of the vehicle is 10.39 m/s.
Solution :
a). Using Gauss's law :
,
.........(1)
Let
in equation (1)
Therefore,
.............(2)



....................(3)
Therefore, 

.............(4)
Now differentiating the equation (4) w.r.t. 'b', we get
Thus the radius for the inner cylinder conductor is 
b). For the energy storage, substitute the radius in (4), we get

This is the amount of energy stored in the conductor.