Answer:
26.1533936612
Step-by-step explanation:
bc
h= 6 square root 3
24^2+6 square root 3^2=684
square root 684=26.1533936612
Answer:
b
Step-by-step explanation:
75-30=45
6 is the amount that it cost for each guest well 6x7=42 therefore milo can only invite up to 7 guests to his party
Answer:
f(-3) = -20
Step-by-step explanation:
We observe that the given x-values are 3 units apart, and that the x-value we're concerned with is also 3 units from the first of those given. So, a simple way to work this is to consider the sequence for x = 6, 3, 0, -3. The corresponding sequence of f(x) values is ...
34, 10, -8, ?
The first differences of these numbers are ...
10 -34 = -24
-8 -10 = -18
And the second difference is ...
-18 -(-24) = 6
For a quadratic function, second differences are constant. This means the next first-difference will be ...
? -(-8) = -18 +6
? = -12 -8 = -20
The value of the function at x=-3 is -20.
_____
The attachment shows using a graphing calculator to do a quadratic regression on the given points. The graph can then be used to find the point of interest. There are algebraic ways to do this, too, but they are somewhat more complicated than the 5 addition/subtraction operations we needed to find the solution. (Had the required x-value been different, we might have chosen a different approach.)
Given that <span>Line m is parallel to line n.
We prove that 1 is supplementary to 3 as follows:
![\begin{tabular} {|c|c|} Statement&Reason\\[1ex] Line m is parallel to line n&Given\\ \angle1\cong\angle2&Corresponding angles\\ m\angle1=m\angle2&Deifinition of Congruent angles\\ \angle2\ and\ \angle3\ form\ a\ linear\ pair&Adjacent angles on a straight line\\ \angle2\ is\ supplementary\ to\ \angle3&Deifinition of linear pair\\ m\angle2+m\angle3=180^o&Deifinition of supplementary \angle s\\ m\angle1+m\angle3=180^o&Substitution Property \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AStatement%26Reason%5C%5C%5B1ex%5D%0ALine%20m%20is%20parallel%20to%20line%20n%26Given%5C%5C%0A%5Cangle1%5Ccong%5Cangle2%26Corresponding%20angles%5C%5C%0Am%5Cangle1%3Dm%5Cangle2%26Deifinition%20of%20Congruent%20angles%5C%5C%0A%5Cangle2%5C%20and%5C%20%5Cangle3%5C%20form%5C%20a%5C%20linear%5C%20pair%26Adjacent%20angles%20on%20a%20straight%20line%5C%5C%0A%5Cangle2%5C%20is%5C%20supplementary%5C%20to%5C%20%5Cangle3%26Deifinition%20of%20linear%20pair%5C%5C%0Am%5Cangle2%2Bm%5Cangle3%3D180%5Eo%26Deifinition%20of%20supplementary%20%5Cangle%20s%5C%5C%0Am%5Cangle1%2Bm%5Cangle3%3D180%5Eo%26Substitution%20Property%0A%5Cend%7Btabular%7D)

</span>