1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivanzaharov [21]
3 years ago
9

Simon works eight hours in a day and earns $96 what is the hourly wage

Mathematics
1 answer:
Brums [2.3K]3 years ago
6 0
The hourly wage is $12. If each day you earn $96, and you work 8 hours, you would divide those two. That would equal $12
You might be interested in
The revenue from selling xshirts is r(x) = 12x.
algol [13]

Answer:

D. p(x)=7x-20

Step-by-step explanation:

r(x) = 12x\\c(x) = 5x + 20\\p(x) = r(x)-c(x)\\p(x)=12x-(5x+20)\\p(x)=12x-5x-20\\p(x)=7x-20

Simply subtract the two functions from each other and simplify to get the result.

4 0
3 years ago
Write an expression for the quotient of z and 4
matrenka [14]

quotient of z and 4

z/4

5 0
3 years ago
Read 2 more answers
On a single set of axes, sketch a picture of the graphs of the following four equations: y = −x+ √ 2, y = −x− √ 2, y = x+ √ 2, a
Artist 52 [7]

Answer:

( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 ),  ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

Step-by-step explanation:

Given:

- Four functions to construct a diamond:

                y = −x+ √ 2,  y = −x− √ 2,  y = x+ √ 2, and y = x − √ 2.

Find:

a)Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

b)Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Solution:

- For first part see the attachment.

- The equation of the unit circle is given as follows:

                                      x^2 + y^2 = 1

- To determine points of intersection we have to solve each given function of y with unit circle equation for set of points of intersection:

                                For:  y = −x+ √ 2 , x - √ 2

                                And: x^2 + y^2 = 1

                                x^2 + (+/- * (x - √ 2))^2 = 1

                                x^2 + (x - √ 2)^2 = 1

                                2x^2 -2√ 2*x + 2 = 1

                                2x^2 -2√ 2*x + 1 = 0

                                 2[ x^2 - √ 2] + 1 = 0

Complete sqr:         (1 - 1/√ 2)^2 = 0

                                 x = 1/√ 2 , x = 1/√ 2                                          

                                 y = -1/√ 2 + √ 2 = 1/√ 2

                                 y = 1/√ 2 - √ 2 = - 1/√ 2

Points are:                ( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 )

- Using vertical symmetry of unit circle we can also evaluate other intersection points by intuition:

                                x = - 1/√ 2

                                 y = 1/√ 2 , -1/√ 2

Points are:              ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

- To determine the function for the rhombus region that would be tangential to unit circle with center at ( - 2 , - 1 ):

- To shift our unit circle from origin to ( - 2 , - 1 ) i.e two units left and 1 unit down.

- For shifts we use the following substitutions:

                           x = x + 2  ....... 2 units of left shift

                           y = y + 1 .......... 1 unit of down shift

- Now substitute the above shifting expression in all for functions we have:

                          y = −x+ √ 2 ----->  y + 1 = - ( x + 2 ) + √ 2

                          y = −x− √ 2 ----->  y + 1 = - ( x + 2 ) - √ 2

                          y = x- √ 2 ------->  y + 1 = ( x + 2 ) - √ 2

                          y = x+ √ 2 ------> y + 1 = ( x + 2 ) + √ 2

                          x^2 + y^2 = 1 ----->  ( x + 2 )^2 + ( y + 1)^2 = 1

- The following diamond shape graph would have the 4 functions as:

             y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

- See attachment for the new sketch.            

7 0
3 years ago
Differentiate √x with respect to x​
Sedaia [141]

Answer:

Step-by-step explanation:

The formula primarily used for finding the derivative of a square root is

d/dx(x^n) = nx^(n - 1)

and so:

(d/dx)(x^(1/2)) = (1/2)x^(1/2 - 1), or:

                                                      1

(1/2)x^(-1/2), or, in radical form, ---------

                                                    2√x

7 0
3 years ago
What would the Outputs be when the Inputs is 1,7,-3,and -5 if the function is Y=6
kondaur [170]

If the function is y=6

It's a constant

For any value of input the output will be equal to 6

therefore

the Outputs when the Inputs is 1,7,-3,and -5 is 6

4 0
1 year ago
Other questions:
  • Write 2,930,365 in expanded notation
    10·2 answers
  • Select all irrational numbers.
    6·1 answer
  • How to solve 4m+6p-8mp
    7·1 answer
  • The Hampton Middle School cafeteria goes through a lot of regular and crunchy peanut butter. Currently, they have a total of 520
    12·2 answers
  • 56 is 80 percent of what number
    8·2 answers
  • Pls help with #8 thx!
    13·1 answer
  • PLEASE HELP I GIVE BRAINLIEST
    9·1 answer
  • ;)
    15·2 answers
  • I need help with this .<br>use the name of the graph to name the function ​
    10·1 answer
  • If x &lt; 0, y &gt; 0, and x + y = z, which statement about z is true?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!