homeostatic imbalance is the answer, because it's when the internal environment cannot remain in equilibrium.
Answer : The formula unit of Sr & Cl is
and the formula unit of Al & S is 
Explanation :
Formula unit : it is defined as the lowest number ratio of ions of an elements in an ionic compound or covalent compound.
For the formula unit of Sr & Cl, two chloride ions
are needed to neutralize the one strontium ion
.
For the formula unit of Al & S, three sulfide ions
are needed to neutralize the two aluminium ion
.
The formula unit of
and
are shown below.
Answer: the molecular altatude of the supercalifragilistic gene should expand by 100%,
L
L
L
L
L
L
L
L
L
L
L
Explanation:
The grams of aluminium extracted from 5000g of alumina is 2647 grams
<h3>Chemical formula of alumina:</h3>
Let's calculate the molecular mass of Al₂O₃
Al₂O₃ = 27 × 2 + 16 × 3 = 54 + 48 = 102 g/mol
Therefore,
102 g of Al₂O₃ = 54 g of aluminium
5000g of Al₂O₃ = ?
mass of aluminium produced = 5000 × 54 / 102
mass of aluminium produced = 270000 / 102
mass of aluminium produced = 2647.05882353
mass of aluminium produced = 2647 grams
learn more on mass here: brainly.com/question/14627327
Answer:
Molar mass of solute: 300g/mol
Explanation:
<em>Vapor pressure of pure benzene: 0.930 atm</em>
<em>Assuming you dissolve 10.0 g of the non-volatile solute in 78.11g of benzene and vapour pressure of solution was found to be 0.900atm</em>
<em />
It is possible to answer this question based on Raoult's law that states vapor pressure of an ideal solution is equal to mole fraction of the solvent multiplied to pressure of pure solvent:

Moles in 78.11g of benzene are:
78.11g benzene × (1mol / 78.11g) = <em>1 mol benzene</em>
Now, mole fraction replacing in Raoult's law is:
0.900atm / 0.930atm = <em>0.9677 = moles solvent / total moles</em>.
As mole of solvent is 1:
0.9677× total moles = 1 mole benzene.
Total moles:
1.033 total moles. Moles of solute are:
1.033 moles - 1.000 moles = <em>0.0333 moles</em>.
As molar mass is the mass of a substance in 1 mole. Molar mass of the solute is:
10.0g / 0.033moles = <em>300g/mol</em>