Answer:
<h2><em><u>Pythagorean </u></em><em><u>theorem </u></em><em><u>reads </u></em><em><u>as:</u></em></h2>
<h2><em><u>H²</u></em><em><u>=</u></em><em><u>P²</u></em><em><u>+</u></em><em><u>B</u></em><em><u>²</u></em></h2>
<h2><em><u>in </u></em><em><u>which </u></em><em><u>p </u></em><em><u>reads </u></em><em><u>as </u></em><em><u>perpendicular </u></em><em><u>so </u></em></h2>
<h2><em><u>P²</u></em><em><u>=</u></em><em><u>H²</u></em><em><u>-</u></em><em><u>B²</u></em></h2>
<em><u>
</u></em>
G(5) = 2(5)-5=5
h(2)=4(2)+5=13
So, g(5)+h(2)=13+5=18.
Answer:
2 sides of the patio are 9ft and another 2 sides are 15ft
Step-by-step explanation:
To solve this problem we have to know thata rectangle has 4 sides and 2 of them are equal to each other
This is the formula to calculate perimeter
p = perimeter 48 ft
a = side a = 9 ft
b = side b
p = 2a + 2b
we replace the known values
48ft = 2*9ft + 2b
48ft = 18ft + 2b
48ft - 18ft = 2b
30 / 2 = b
15 = b
2 sides of the patio are 9ft and another 2 sides are 15ft
The acute angle inside the triangle is 57 degrees. The one labeled “1” is 123 degrees.
For 1 year, the house appreciates $4375 (3.5% of 125,000). Therefore after 10 years, $4375(10) = $43750. $125,000+ $43750 = $168,750.