1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
3 years ago
12

1. Adjacent, complementary, vertical, or supplementary

Mathematics
1 answer:
Nat2105 [25]3 years ago
3 0
1) ABF & EBD ARE SUPPLEMENTARY ANFLES (ABF + EBD =180)
2) FED=?. Note that FED=GEC=(16x-8).
Now in Triangle FED, the relation is (16x-8) + 35 + (2x+9) =180
hence x=8 & DEF=120


You might be interested in
at McDonalds a cheese burger, c, has 200 fewer calories that a large fry, f. two cheeseburgers and a large fry have 1100 calorie
lora16 [44]

Answer:

700 more caleries

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Rodger has 47 cars . Can he group the cars in more than two ways?
deff fn [24]
First of all, Rodger must be making some serious cash to have 47 cars. Going back to the question, he can not group the cars in more than 2 ways. He can only group it in 1 way, 47 groups of 1. Pls brainliest
4 0
3 years ago
7 (8.02) need answer asap
timama [110]
Both groups are similar.
7 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
» Round 13.045 to the nearest whole number.
pentagon [3]

Answer:

13

Step-by-step explanation:

Have a good day

7 0
3 years ago
Read 2 more answers
Other questions:
  • Sin(x2 + y2) da r , where r is the region in the first quadrant between the circles with center the origin and radii 2 and 5
    8·1 answer
  • Simplify.<br> -4(3 – 1) +2
    10·1 answer
  • The city council is planning to construct a park on North Street that has a triangular perimeter. They want to place a fountain
    7·2 answers
  • A sign 4 meters tall cast a shadow 5 meters long . At the same time, a tree casts a shadow 30 meters long. What is the height of
    12·1 answer
  • There are 42 technicians to repair 6 Aircrafts. The ratio of Aircrafts to technicians is…
    5·1 answer
  • Alaina surveys 75 of her classmates and finds that 48% of them like to eat tacos. She also finds that 60% of her 45 relatives li
    14·1 answer
  • 9. What are the dimensions of the rectangle?
    13·2 answers
  • Given the system of equations below,explain if (6,-9) is a solution or not.
    6·1 answer
  • WILL MARK BRAINLIEDT If the length of an arc of a circle of radius 7 is approximately 10.99 cm. What is the measure of the centr
    7·1 answer
  • 7,
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!