1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
4 years ago
13

What is a solution to —2(5x+2x)—3(5)=—10+2(—7x)—5

Mathematics
1 answer:
ladessa [460]4 years ago
8 0

Step-by-step explanation:

-10x+-4x-15/10+-14x-5

-14x-15/5-14x

+14x. +14x.

-15 does not equal 5 no solution

You might be interested in
Mathematics please help
Aleonysh [2.5K]

Answer:

D

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
How do you get the answer to 1+1?
sveticcg [70]

Answer:

2

Step-by-step explanation:

If we take 1 and add another 1, you will get 2

5 0
3 years ago
Read 2 more answers
Use the virtual models to solve 5/8 x 3
HACTEHA [7]

Answer:

5/8 x 3 = 15/8. If it needs to colour up then you to colour 15 of them.

5 0
3 years ago
7.2 Given a test that is normally distributed with a mean of 100 and a standard deviation of 10, find: (a) the probability that
kompoz [17]

Answer:

a)

<em>The probability that a single score drawn at random will be greater than 110  </em>

<em>P( X > 110) = 0.1587</em>

<em>b) </em>

<em>The probability that a sample of 25 scores will have a mean greater than 105</em>

<em>  P( x> 105) = 0.0062</em>

<em>c) </em>

<em>The probability that a sample of 64 scores will have a mean greater than 105</em>

<em> P( x⁻> 105)  = 0.002</em>

<em></em>

<em>d) </em>

<em> The probability that the mean of a sample of 16 scores will be either less than 95 or greater than 105</em>

<em>    P( 95 ≤ X≤ 105) = 0.9544</em>

<em></em>

Step-by-step explanation:

<u><em>a)</em></u>

Given mean of the Normal distribution 'μ'  = 100

Given standard deviation of the Normal distribution 'σ' = 10

a)

Let 'X' be the random variable of the Normal distribution

let 'X' = 110

Z = \frac{x-mean}{S.D} = \frac{110-100}{10} =1

<em>The probability that a single score drawn at random will be greater than 110</em>

<em>P( X > 110) = P( Z >1)</em>

                = 1 - P( Z < 1)

               =  1 - ( 0.5 +A(1))

               = 0.5 - A(1)

               = 0.5 -0.3413

              = 0.1587

b)

let 'X' = 105

Z = \frac{x-mean}{\frac{S.D}{\sqrt{n} } } = \frac{105-100}{\frac{10}{\sqrt{25} } } = 2.5

<em>The probability that a single score drawn at random will be greater than 110</em>

<em>  P( x> 105) = P( z > 2.5)</em>

<em>                    = 1 - P( Z< 2.5)</em>

<em>                    = 1 - ( 0.5 + A( 2.5))</em>

<em>                   = 0.5 - A ( 2.5)</em>

<em>                  = 0.5 - 0.4938</em>

<em>                  = 0.0062</em>

<em>The probability that a single score drawn at random will be greater than 105</em>

<em>  P( x> 105) = 0.0062</em>

<em>c) </em>

let 'X' = 105

Z = \frac{x-mean}{\frac{S.D}{\sqrt{n} } } = \frac{105-100}{\frac{10}{\sqrt{64} } } =  4

<em>The probability that a single score drawn at random will have a mean greater than 105</em>

<em>  P( x> 105) = P( z > 4)</em>

<em>                    = 1 - P( Z< 4)</em>

<em>                    = 1 - ( 0.5 + A( 4))</em>

<em>                   = 0.5 - A ( 4)</em>

<em>                  = 0.5 - 0.498</em>

<em>                  = 0.002</em>

<em> The probability that a sample of 64 scores will have a mean greater than 105</em>

<em> P( x⁻> 105)  = 0.002</em>

<em>d) </em>

<em>Let  x₁ = 95</em>

Z = \frac{x_{1} -mean}{\frac{S.D}{\sqrt{n} } } = \frac{95-100}{\frac{10}{\sqrt{16} } } =  -2

<em>Let  x₂ = 105</em>

Z = \frac{x_{1} -mean}{\frac{S.D}{\sqrt{n} } } = \frac{105-100}{\frac{10}{\sqrt{16} } } =  2

The probability that the mean of a sample of 16 scores will be either less than 95 or greater than 105

P( 95 ≤ X≤ 105) = P( -2≤z≤2)

                         = P(z≤2) - P(z≤-2)

                        = 0.5 + A( 2) - ( 0.5 - A( -2))

                      = A( 2) + A(-2)       (∵A(-2) =A(2)

                     =  A( 2) + A(2)  

                    = 2 × A(2)

                  = 2×0.4772

                  = 0.9544

<em> The probability that the mean of a sample of 16 scores will be either less than 95 or greater than 105</em>

<em>    P( 95 ≤ X≤ 105) = 0.9544</em>

<em>    </em>

7 0
3 years ago
PLEASE HELPPP ITS TIMED Consider the following functions. f(x) = x2 – 4 g(x) = x – 2 What is (f(x))(g(x))? a.(f(x))(g(x)) = x +
Lemur [1.5K]

Answer:

  • d(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numbers

Step-by-step explanation:

  • (f(x))(g(x)) =
  • (x²- 4)*(x-2) =x³ - 2x² - 4x + 8

<u>Choice d. is correct </u>

  • a.(f(x))(g(x)) = x + 2; x ≠ 2
  • incorrect
  • b.(f(x))(g(x)) = x + 2; all real numbers
  • incorrect
  • c.(f(x))(g(x)) = x3 – 2x2 – 4x + 8; x ≠ 2
  • incorrect
  • d(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numbers
  • correct
4 0
3 years ago
Other questions:
  • Which is true of the multiples of a prime number
    11·1 answer
  • 24 POINTS!!!!!!!!
    11·1 answer
  • What should be done to solve the equation? x + 14 = 21
    9·2 answers
  • What is another name for counting numbers
    10·1 answer
  • Ge A 32 - m tall building casts a shadow. The distance from the top of the building to the tip of the shadow is 34 m . Find the
    6·1 answer
  • Josiah ran 4/5 mile. How many tenths are equal to 4/5 mile. using a bar duagram
    5·1 answer
  • Solve 15 = 2^(x+1).
    11·1 answer
  • Plz help easy points
    9·1 answer
  • +<br> 9<br> y<br><br> Find <br> x<br> when <br> y<br> =<br> 6<br> and <br> R<br> =<br> 7
    15·1 answer
  • Examine the Graph. <br> HELP FOR POINTS
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!