1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
2 years ago
8

Need help with trig

Mathematics
1 answer:
Sedaia [141]2 years ago
5 0
SinA= 16/20= 4/5=0.8 degree
cosA=12/20=3/5=0.6 degree
tanA=16/12= 4/3=1.33 degree
You might be interested in
Can someone anyone please man help me out
zzz [600]

Answer:

2 sqrt(3) -2i

Step-by-step explanation:

If we have the magnitude and the theta

z = |z| cos theta + i |z| sin theta

  = 4 cos 330 + i  4 sin 330

  =4 (sqrt(3)/2) + 4i (-1/2)

  = 2 sqrt(3) -2i


5 0
3 years ago
Answer 1-10 <br> Need before 10:00 CN
forsale [732]

Answer:

1. 1 4/5

2. 1 1/30

3. 2 3/20

4. 1 1/5

5. 1 13/20

6. 1 13/30

7. 1 29/60

8. 1 3/20

9. 1 7/10

10. 1 9/20

Hope this helps :)

8 0
3 years ago
ITS EASY PLS HELP!!!!!
faust18 [17]

Answer:

3/18

Step-by-step explanation:

5 0
2 years ago
Some students want to order shirts with their school logo, The Tees company charges $9.65 per shirt
Paul [167]
This is the equations,
Tee Company: 9.65x + 43
Shirtz Company: 8.40x + 58
If you were to buy one shirt from each company these would be the prices,
Tee Company: $52.65
Shirtz Company: $66.40
I would recommend the Tee Company since the price per shirt is cheaper.
7 0
2 years ago
Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1 6 , 1 6 y = (d
Leni [432]
Answers: 

(a) y = \frac{1}{1 - Cx}, for any constant C

(b) Solution does not exist

(c) y = \frac{256}{256 - 15x}

(d) y = \frac{64}{64 - 15x}

Explanations:

(a) To solve the differential equation in the problem, we need to manipulate the equation such that the expression that involves y is on the left side of the equation and the expression that involves x is on the right side equation.

Note that

 x\frac{dy}{dx} = y^2 - y&#10;\\&#10;\\ \indent xdy = \left ( y^2 - y \right )dx&#10;\\&#10;\\ \indent \frac{dy}{y^2 - y} = \frac{dx}{x}&#10;\\&#10;\\ \indent \int {\frac{dy}{y^2 - y}} = \int {\frac{dx}{x}} &#10;\\&#10;\\ \indent \boxed{\int {\frac{dy}{y^2 - y}} = \ln x + C_1}      (1)

Now, we need to evaluate the indefinite integral on the left side of equation (1). Note that the denominator y² - y = y(y - 1). So, the denominator can be written as product of two polynomials. In this case, we can solve the indefinite integral using partial fractions.

Using partial fractions:

\frac{1}{y^2 - y} = \frac{1}{y(y - 1)} = \frac{A}{y - 1} + \frac{B}{y}&#10;\\&#10;\\ \indent \Rightarrow \frac{1}{y^2 - y} = \frac{Ay + B(y-1)}{y(y - 1)} &#10;\\&#10;\\ \indent \Rightarrow \boxed{\frac{1}{y^2 - y} = \frac{(A+B)y - B}{y^2 - y} }      (2)

Since equation (2) has the same denominator, the numerator has to be equal. So,

1 = (A+B)y - B&#10;\\&#10;\\ \indent \Rightarrow (A+B)y - B = 0y + 1&#10;\\&#10;\\ \indent \Rightarrow \begin{cases}&#10; A + B = 0&#10;& \text{(3)}\\-B = 1&#10; & \text{(4)}   \end{cases}

Based on equation (4), B = -1. By replacing this value to equation (3), we have

A + B = 0
A + (-1) = 0
A + (-1) + 1 = 0 + 1
A = 1 

Hence, 

\frac{1}{y^2 - y} = \frac{1}{y - 1} - \frac{1}{y}

So,

\int {\frac{dy}{y^2 - y}} = \int {\frac{dy}{y - 1}} - \int {\frac{dy}{y}} &#10;\\&#10;\\ \indent \indent \indent \indent = \ln (y-1) - \ln y&#10;\\&#10;\\ \indent  \boxed{\int {\frac{dy}{y^2 - y}} = \ln \left ( \frac{y-1}{y} \right ) + C_2}

Now, equation (1) becomes

\ln \left ( \frac{y-1}{y} \right ) + C_2 = \ln x + C_1&#10;\\&#10;\\ \indent \ln \left ( \frac{y-1}{y} \right ) = \ln x + C_1 - C_2&#10;\\&#10;\\ \indent  \frac{y-1}{y} = e^{C_1 - C_2}x&#10;\\&#10;\\ \indent  \frac{y-1}{y} = Cx, \text{ where } C = e^{C_1 - C_2}&#10;\\&#10;\\ \indent  1 - \frac{1}{y} = Cx&#10;\\&#10;\\ \indent \frac{1}{y} = 1 - Cx&#10;\\&#10;\\ \indent \boxed{y = \frac{1}{1 - Cx}}&#10;       (5)

At point (0, 1), x = 0, y = 1. Replacing these values in (5), we have

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 1 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1&#10;&#10;

Hence, for any constant C, the following solution will pass thru (0, 1):

\boxed{y = \frac{1}{1 - Cx}}

(b) Using equation (5) in problem (a),

y = \frac{1}{1 - Cx}   (6)

for any constant C.

Note that equation (6) is called the general solution. So, we just replace values of x and y in the equation and solve for constant C.

At point (0,0), x = 0, y =0. Then, we replace these values in equation (6) so that 

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 0 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1

Note that 0 = 1 is false. Hence, for any constant C, the solution that passes thru (0,0) does not exist.

(c) We use equation (6) in problem (b) and because equation (6) is the general solution, we just need to plug in the value of x and y to the equation and solve for constant C. 

At point (16, 16), x = 16, y = 16 and by replacing these values to the general solution, we have

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 16 = \frac{1}{1 - C(16)} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - 16C}&#10;\\&#10;\\ \indent 16(1 - 16C) = 1&#10;\\ \indent 16 - 256C = 1&#10;\\ \indent - 256C = -15&#10;\\ \indent \boxed{C = \frac{15}{256}}&#10;&#10;&#10;

By replacing this value of C, the general solution becomes

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent y = \frac{1}{1 - \frac{15}{256}x} &#10;\\ &#10;\\ \indent y = \frac{1}{\frac{256 - 15x}{256}}&#10;\\&#10;\\&#10;\\ \indent \boxed{y = \frac{256}{256 - 15x}}&#10;&#10;&#10;&#10;

This solution passes thru (16,16).

(d) We do the following steps that we did in problem (c):
        - Substitute the values of x and y to the general solution.
        - Solve for constant C

At point (4, 16), x = 4, y = 16. First, we replace x and y using these values so that 

y = \frac{1}{1 - Cx} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - C(4)} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - 4C} &#10;\\ &#10;\\ \indent 16(1 - 4C) = 1 &#10;\\ \indent 16 - 64C = 1 &#10;\\ \indent - 64C = -15 &#10;\\ \indent \boxed{C = \frac{15}{64}}

Now, we replace C using the derived value in the general solution. Then,

y = \frac{1}{1 - Cx} \\ \\ \indent y = \frac{1}{1 - \frac{15}{64}x} \\ \\ \indent y = \frac{1}{\frac{64 - 15x}{64}} \\ \\ \\ \indent \boxed{y = \frac{64}{64 - 15x}}
5 0
3 years ago
Other questions:
  • Which is true.<br> A<br> B<br> C<br> D
    6·2 answers
  • I need help asap no rocky
    9·1 answer
  • prove tan(theta/2)=sin theta/1+cos theta for theta in quadrant 1 by filling in the calculations and reasons. PLEASE HELP!!!!
    15·1 answer
  • Write 7/5 as a decimal
    6·2 answers
  • The graph of the function y=x^2-x-2 is shown below
    11·2 answers
  • ANSWER ASAP!! <br><br><br><br><br><br><br><br><br><br>remember to show work​
    11·1 answer
  • Kira owes her mom $125 and is planning to to payer back with payments $7 a week. Write an equation in slope-intercept form that
    6·1 answer
  • To encourage people to vote, Tatiana calls her family
    12·1 answer
  • Solve.<br> -<br> 7 1/2 ÷ ( 4 1/2 - 5 1/8 ) = ?
    15·2 answers
  • Vivian is working with a styrofoam cube for art class. The length of on side is five inches. How much surface area does Vivian h
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!