Hi!
This is a fun one, as it delves into basic trigonometry.
We're going to use the Pythagorean theorem here, which says that for right triangles where "c" is the hypotenuse,
a² + b² = c²
We have to split this large triangle into two parts, both of which are right triangles. (This is why they drew a line in the middle to tell you that the larger triangle is composed of two right triangles.)
Let's do the one on the right first.
We know that the length of the hypotenuse is 10, and that the length of one of the legs is 6.5. If we plug this into our equation, we'll get the length of the other leg. I'm choosing "b" to be 6.5, but it really doesn't matter if you pick "a" or "b", so long as you reserve "c" for the hypotenuse (longest side).
a² + 6.5² = 10²
a² + 42.25 = 100
a² = 57.75
√a² = √57.75
a ≈ 7.6
Therefore, the length of DC is about 7.6.
Find the length of AD using the same method (7.5 is the hypotenuse "c", and 6.5 is one of the legs "a" or "b"). Then, once you have AD, add the lengths of AD and DC to get AC.
Have a great one!
By definition, the prism volume is given by:

Where,
Ab: base area
L: long
Substituting values we have:
Answer: The volume of the triangular prism is:
ANSWER
A parabola.
EXPLANATION
The given conic is :

This can be rewritten as:


This is a parabola with the vertex at the origin.
The foci is (0,4)
Therefore the given conic section is a parabola that has an axis of symmetry parallel to the y-axis.
Answer: a) Yes b) Polygon ABCD ~ Polygon EFGH c) JKLM is 3x bigger than polygon ABCD
Step-by-step explanation:
(for part c)
JM= 36
AD= 12
36/12= 3
JKLM is 3x bigger than polygon ABCD
Answer:

Step-by-step explanation:

This is a homogeneous linear equation. So, assume a solution will be proportional to:

Now, substitute
into the differential equation:

Using the characteristic equation:

Factor out 

Where:

Therefore the zeros must come from the polynomial:

Solving for
:

These roots give the next solutions:

Where
and
are arbitrary constants. Now, the general solution is the sum of the previous solutions:

Using Euler's identity:


Redefine:

Since these are arbitrary constants

Now, let's find its derivative in order to find
and 

Evaluating
:

Evaluating
:

Finally, the solution is given by:
