Answer:
$544.265
Explanation:
Given:
FV = $1,000
Yield to maturity = 5.2%
N = 12 years
Required:
Find the value of the zero coupon bond.
Use the formula:
PV = FV * PVIF(I/Y, N)
Thus,
PV = 1000 * PVIF(5.2%, 12)
= 1000 * 0.544265
= $544.265
The value of the zero coupon bond is $544.3
Answer:
Kanban container size = 73
Number of kanbans needed = 5
Explanation:
Kanban container size (Q):
Q = SQRT [(2 x D x S) / H x (1 - d/p)]
where,
D = Annual demand
S = Setup cost
H = Holding cost
d = Daily usage
p = Daily production
Putting the given values in the above formula,
CONTAINER SIZE = SQRT ((2 * ANNUAL DEMAND * SETUP COST) / (HOLDING COST * (1 - (DAILY USAGE / DAILY PRODUCTION))))
Q = SQRT [(2 x 4,000 x $30) / $125 x (1 - 16/25)]
Kanbans container size = 73 units (Rounding off to the nearest whole number)
NUMBER OF KANBANS = DEMAND DURING LEAD TIME + SAFETY STOCK / SIZE OF CONTAINER
K = ((16 * 16) + (4 * 25) / 73 = 5
Answer:
<em>King </em><em>George</em><em> </em><em>lll </em><em>sent </em><em>British </em><em>soldiers</em><em> </em><em>to </em><em>the </em><em>colonies</em><em> </em><em>to </em><em>enforce</em><em> </em><em>payment</em><em> </em><em>of </em><em>taxes,</em><em> </em><em>because</em><em> </em><em>colonist</em><em> </em><em>sometimes</em><em> </em><em>smuggled </em><em>goods </em><em>into </em><em>colonies</em><em> </em><em>to </em><em>avoid</em><em> </em><em>paying</em><em> taxes</em><em>.</em><em> </em><em>.</em><em>.</em><em>.</em><em> </em><em>The </em><em>items </em><em>were </em><em>marked </em><em>with </em><em>a </em><em>stamp </em><em>to </em><em>show </em><em>the </em><em>tax </em><em>was </em><em>paid.</em>