1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
10

How many chromosomes are in a haploid cell?

Biology
2 answers:
Harlamova29_29 [7]3 years ago
5 0

Answer:

Haploid describes a cell that contains a single set of chromosomes. The term haploid can also refer to the number of chromosomes in egg or sperm cells, which are also called gametes. In humans, gametes are haploid cells that contain 23 chromosomes, each of which a one of a chromosome pair that exists in diplod cells.

Explanation:

Inga [223]3 years ago
4 0

First you must know that a diploid cell has double the amount of chromosomes of a haploid cell. A diploid cell has 46 chromosomes. When we divide 46 by 2 you get 23. This means that there are 23 chromosomes in a haploid cell.

Hope this helped!

~Just a girl in love with Shawn Mendes

You might be interested in
A molecule that can be used as a molecular clock has a neutral mutation rate of one mutation per 5 million years. How many years
gregori [183]

Answer:To put dates on events in evolutionary history, biologists count how many mutations have accumulated over time in a species’ genes. But these “molecular clocks” can be fickle. A paper in the 28 September Physical Review Letters mathematically relates erratic “ticking” of the clock to properties of the DNA sequence. Researchers may eventually use the results to select which genes make the best clocks.

Although mutations in DNA are rare, they are crucial for evolution. Each mutation in a gene changes one small piece of a protein molecule’s structure–sometimes rendering it non-functional and occasionally improving it. The vast majority of mutations, however, neither hurt nor help, often because they affect an unimportant part of their protein. Such a “neutral” mutation usually dies out over the generations, but occasionally one proliferates until virtually every individual has it, permanently “fixing” the mutation in the evolving species.

Over thousands of generations, these fixed mutations accumulate. To gauge the time since two species diverged from a common ancestor, biologists count the number of differences between stretches of their DNA. But different DNA segments (genes) often give different answers, and those answers differ by much more than would be expected if the average rate of mutations remained constant over evolutionary time. Sometimes they also disagree with dates inferred from fossils. Now Alpan Raval, of the Keck Graduate Institute and Claremont Graduate University, both in Claremont, California, has put precise mathematical limits on this variation.

Raval’s work is based on representing possible DNA sequences for a gene as a network of interconnected points or “nodes.” Each point represents a version of the gene sequence that differs by exactly one neutral mutation–a single DNA “letter”–from its immediate neighbors. The network contains only neutral mutations; non-functional versions of the sequence aren’t part of the network.

Models and simulations had suggested that if the number of neighbors varies from point to point–that is, if some sequences allow more neutral mutations than others–mutations accumulate erratically over time, making the molecular clock unreliable. Raval calculates precise limits on how unsteady the clock could get, based on properties of the network, such as the average number of neighbors for each node or the number of “jumps” connecting any two randomly chosen nodes. “The great strength of this paper is that it’s now mathematically worked out in much more detail than before,” says Erik van Nimwegen of the University of Basel and the Swiss Institute of Bioinformatics in Switzerland, who developed the framework that Raval uses.

Still, the relevant network properties are “not very intuitive,” van Nimwegen observes. Raval agrees. “The real question from this point on would be to identify what kinds of proteins would be good molecular clocks.” He says that according to his results, for a protein to be a good clock, “virtually all single mutations [should] be neutral”–many neighbors per node–but “as you start accumulating double and triple mutants, it should quickly become dysfunctional.” Raval is working to relate these network features to protein properties that researchers could measure in the lab.

Researchers have suggested other explanations for the erratic behavior of molecular clocks, such as variations in the mutation rate because of changes in the environment. But such environmental changes are relatively fast, so their effect should average out over evolutionary time, says David Cutler of Emory University in Atlanta. He says that in network models, by contrast, changes in the mutation rate are naturally slow because the point representing the current sequence moves slowly around the network as mutations accumulate.

Explanation:

4 0
3 years ago
Read 2 more answers
How does the immune system protect the body from disease?.
Margarita [4]
The immune system protects the body from possibly harmful substances by recognizing and responding to antigens.
3 0
2 years ago
Read 2 more answers
A cell is a complex system. Like most systems, a cell contains a boundary that separates things that are inside the system from
wel
B .The membrane is what separates, and is the system boundary.<span />
6 0
4 years ago
Read 2 more answers
Where would you expect to find the kelp forest, a type of algae, pictured here and why?
sertanlavr [38]

answer:

Where would you expect to find the kelp forest, a type of algae, pictured here and why? Algae live only in the epipelagic zone because it is the only zone with enough light for photosynthesis. During an El Niño year, there is increased precipitation in the Southern United States, but the north is warmer and dry

3 0
4 years ago
Changes in the DNA sequence or mutations help drive
Jobisdone [24]
Changes in the DNA sequence, or mutations, help drive evolutionary change
7 0
3 years ago
Other questions:
  • What do all cells need in order to perform cellular respiration?
    8·2 answers
  • what do you think would happen if you took an antacid prior to eating a hamburger? think about this in terms of what buffers do
    5·2 answers
  • What are the four main stages of cell cycle?
    11·1 answer
  • A biochemist isolates and purifies various molecules needed for DNA replication. When she adds some DNA, replication occurs, but
    10·2 answers
  • How did we determine that mutations are random
    6·1 answer
  • Trying to explain a solar eclipse is an example of
    12·2 answers
  • Michael loves playing his clarinet and believes it attracts more rabbits than any other instrument he
    5·1 answer
  • Which organism can convert light energy into chemical energy?
    9·1 answer
  • What do immune cells do when they come in contact with a virus?
    6·2 answers
  • Bacteria that might be found on my desk is apart of what kingdom?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!