1) rearrange one of the formulas so one of the variables is by itself
2) in the other equation replace the variable you solved for with the rearranged equation
3) distribute the 2
4) distrubute the negative
5) combine like terms
6-7) begin to solve for x
8) plug in the value solved for x in the other equation
9-11) solve for y
Final Answers:
x=5/7 y=4
Answer:
m= 20 for one becouse 5×20 is 100
m= 5 because 5×2 is 10
or do 5÷100 that is 20
and 2÷10 that is 5
The denominator of the first term is a difference of squares, such that
4<em>a</em> ² - <em>b</em> ² = (2<em>a</em>)² - <em>b</em> ² = (2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)
So you can write the fractions as
(4<em>a</em> ² + <em>b</em> ²)/((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)) - (2<em>a</em> - <em>b</em>)/(2<em>a</em> + <em>b</em>)
Multiply through the second fraction by 2<em>a</em> - <em>b</em> to get a common denominator:
(4<em>a</em> ² + <em>b</em> ²)/((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)) - (2<em>a</em> - <em>b</em>)²/((2<em>a</em> + <em>b</em>) (2<em>a</em> - <em>b</em>))
((4<em>a</em> ² + <em>b</em> ²) - (2<em>a</em> - <em>b</em>)²) / ((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>))
Expand the numerator:
(4<em>a</em> ² + <em>b</em> ²) - (2<em>a</em> - <em>b</em>)²
(4<em>a</em> ² + <em>b</em> ²) - (4<em>a</em> ² - 4<em>ab</em> + <em>b</em> ²)
4<em>ab</em>
<em />
So the original expression reduces to
4<em>ab</em> / ((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>))
or
4<em>ab</em> / (4<em>a</em> ² - <em>b</em> ²)
upon condensing the denominator again.
Answer:

Step-by-step explanation:
Let us use the identity
sin(A+B)= cos(A) sin(B)+cos (B) sin(A) to simplify the given expression
Then
--------------------(1)
Here
---------------------(2)
---------------------(3)
Substituting the values in (1)



Answer:
10
Step-by-step explanation:
the length is 2 and the width is 5 so 2·5=10