For an inelastic collision where coefficient of restitution,e, is equal to 0, the momentum is conserved but not the kinetic energy. So, there is addition or elimination of kinetic energy.
On the otherhand, when e = 1, like for an elastic collision, kinetic energy and momentum is conserved. Thus, the system's kinetic energy is unchanged.
Freezing (liquid to solid)
Deposition (gas to solid)
Condensation (gas to liquid)
All three of these state changes are a result of a energy loss. When considering energy loss it is best to think of situations where temperature has dropped. Less energy in the system results in less energy the substance is exposed to or has available.
Answer:
none of the above or screwdriver
Answer:
.
Explanation:
The average speed of an object is equal to total distance over total time.
- Distance traveled:
.
How much time is taken? This trip is divided into two halves, each of distance
.
Time spent on the first half of the trip:
.
Similarly, time spent on the second half of the trip:
.
In total:
.
Average speed:
.
This value turned out to be slightly different from the average of the speed during the two halves of the journey. The reason is that the object traveled at each speed for a different amount of time. It spent more time at the slower speed, which gives that speed a greater weight in the average. That explains why the average speed is closer to
rather than
.