Let the number of thirds be x.
(2/5) = x(1/3)
2/5 = x/3
x/3 = 2/5
x = 2/5 * 3
x = 6/5
x = 1.2
Two-fifths equals 1.2 thirds
Answer:
y = x - 2
Step-by-step explanation:
Parallel lines have the same slope, so the line will also have a slope of 1.
Plug in the slope and given point into y = mx + b to solve for b:
y = mx + b
-1 = 1(1) + b
-1 = 1 + b
-2 = b
Plug in b and the slope into y = mx + b
y = x - 2 is the equation
Answer:
Step-by-step explanation:
The first parabola has vertex (-1, 0) and y-intercept (0, 1).
We plug these values into the given vertex form equation of a parabola:
y - k = a(x - h)^2 becomes
y - 0 = a(x + 1)^2
Next, we subst. the coordinates of the y-intercept (0, 1) into the above, obtaining:
1 = a(0 + 1)^2, and from this we know that a = 1. Thus, the equation of the first parabola is
y = (x + 1)^2
Second parabola: We follow essentially the same approach. Identify the vertex and the two horizontal intercepts. They are:
vertex: (1, 4)
x-intercepts: (-1, 0) and (3, 0)
Subbing these values into y - k = a(x - h)^2, we obtain:
0 - 4 = a(3 - 1)^2, or
-4 = a(2)². This yields a = -1.
Then the desired equation of the parabola is
y - 4 = -(x - 1)^2
There seems to be a flaw with this question because it says that there are five x-intercepts but the given information only gives you 4 x-intercepts to work with.
Even means the graph is symmetric about the y-axis
The best answer is <span>A.(–6, 0), (–2, 0), and (0, 0)
because you do not have to worry about another point (0,0). Plus we need (-6,0) for it to be symmetric with (6,0).
Consider function f(x) = x²(x-6)(x+6)(x+2)</span>²(x-2)<span>². It is even and fits these conditions as it has x-intercepts at (6,0), (-6,0), (-2,0), (2,0), and (0,0). again, the question does not tell us the fifth x-intercept, so we need to assume that there is another one that needs to be there...and so (-2,0) must have (2,0) for it to be even as well.</span>
All good. Fill in t with 10 and solve for the expression g(t). 10 = t so it fill in